by Keyword: Light sheet microscopy

Breideband, L, Pampaloni, F, Martensson, G, Eklund, R, Wurst, H, Angres, B, Torras, N, Martinez, E, Shalom-Feuerstein, R, (2022). BIOPRINTING BY LIGHT SHEET LITHOGRAPHY: ENGINEERING COMPLEX TISSUES WITH HIGH RESOLUTION AT HIGH SPEED (Abstract 1581) Tissue Engineering Part a 28, S443-S443

Three-dimensional bioprinting (3D bioprinting) has been at theforefront of tissue engineering research in the past years, with evermore efficient systems reaching the market(1). While existing 3Dbioprinting techniques are numerous and varied, they are limited bylong printing times when used at high resolution(2). The techniquedescribed in this work aims at enabling fast and accurate productionof monolayered skin constructs.To achieve shorter production times, a digital scanned light sheetis used to produce patterns of polymerized hydrogel, which enablesthe printing of a full three-dimensional plane in a matter of a fewhundred milliseconds. The high resolution resides in the properties ofthe light sheet itself – the width of the light sheet represents the z-axial resolution of the system (as low as 10mm) and the x-axialresolution is determined by the intensity profile of the gaussian beam(around 50mm). In order to fully exploit this system, the hydrogelused to encapsulate the cells must therefore be tailor-made for pho-toactivated cross-linking.As a proof of concept, a light sheet microscope is used as a po-lymerization source for novel photosensitive hydrogels. The up-coming hardware, software, chemical and biological improvementsneeded to reach the full potential of this system are expected toeventually be sufficient to print a complete skin construct, whichcould be used in the drug development industry, or as a graft forregenerative medicine therapy. Additionally, the constructs can beused to reduce and even replace animal testing for drug or cosmetictesting.

JTD Keywords: 3d bioprinting, Light sheet microscopy, Stereolithography