DONATE

Publications

by Keyword: M1

Riefolo, F, Sortino, R, Matera, C, Claro, E, Preda, B, Vitiello, S, Traserra, S, Jimenez, M, Gorostiza, P, (2021). Rational Design of Photochromic Analogues of Tricyclic Drugs Journal Of Medicinal Chemistry 64, 9259-9270

Tricyclic chemical structures are the core of many important drugs targeting all neurotransmitter pathways. These medicines enable effective therapies to treat from peptic ulcer disease to psychiatric disorders. However, when administered systemically, they cause serious adverse effects that limit their use. To obtain localized and on-demand pharmacological action using light, we have designed photoisomerizable ligands based on azobenzene that mimic the tricyclic chemical structure and display reversibly controlled activity. Pseudo-analogues of the tricyclic antagonist pirenzepine demonstrate that this is an effective strategy in muscarinic acetylcholine receptors, showing stronger inhibition upon illumination both in vitro and in cardiac atria ex vivo. Despite the applied chemical modifications to make pirenzepine derivatives sensitive to light stimuli, the most potent candidate of the set, cryptozepine-2, maintained a moderate but promising M-1 vs M-2 subtype selectivity. These photoswitchable crypto-azologs of tricyclic drugs might open a general way to spatiotemporally target their therapeutic action while reducing their systemic toxicity and adverse effects.

JTD Keywords: Binding, M1, Pirenzepine, Rat-brain, Receptor


van Zanten, T. S., Gomez, J., Manzo, C., Cambi, A., Buceta, J., Reigada, R., Garcia-Parajo, M. F., (2010). Direct mapping of nanoscale compositional connectivity on intact cell membranes Proceedings of the National Academy of Sciences of the United States of America 107, (35), 15437-15442

Lateral segregation of cell membranes is accepted as a primary mechanism for cells to regulate a diversity of cellular functions. In this context, lipid rafts have been conceptualized as organizing principle of biological membranes where underlying cholesterol-mediated selective connectivity must exist even at the resting state. However, such a level of nanoscale compositional connectivity has been challenging to prove. Here we used single-molecule near-field scanning optical microscopy to visualize the nanolandscape of raft ganglioside GM1 after tightening by its ligand cholera toxin (CTxB) on intact cell membranes. We show that CTxB tightening of GM1 is sufficient to initiate a minimal raft coalescence unit, resulting in the formation of cholesterol-dependent GM1 nanodomains <120 nm in size. This particular arrangement appeared independent of cell type and GM1 expression level on the membrane. Simultaneous dual color high-resolution images revealed that GPI anchored and certain transmembrane proteins were recruited to regions proximal (<150 nm) to CTxB-GM1 nanodomains without physical intermixing. Together with in silico experiments, our high-resolution data conclusively demonstrate the existence of raft-based interconnectivity at the nanoscale. Such a linked state on resting cell membranes constitutes thus an obligatory step toward the hierarchical evolution of large-scale raft coalescence upon cell activation.

JTD Keywords: Cholera toxin, Membrane heterogeneity, Near-field scanning optical microscopy, Raft ganglioside GM1, Single-molecule detection