by Keyword: Manuals

Ferrer-Lluis, I., Castillo-Escario, Y., Montserrat, J. M., Jané, R., (2019). Automatic event detector from smartphone accelerometry: Pilot mHealth study for obstructive sleep apnea monitoring at home Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 4990-4993

Obstructive sleep apnea (OSA) is a common disorder with a low diagnosis ratio, leaving many patients undiagnosed and untreated. In the last decades, accelerometry has been found to be a feasible solution to obtain respiratory activity and a potential tool to monitor OSA. On the other hand, many smartphone-based systems have already been developed to propose solutions for OSA monitoring and treatment. The objective of this work was to develop an automatic event detector based on smartphone accelerometry and pulse oximetry, and to assess its ability to detect thoracic movements. It was validated with a commercial OSA monitoring system at home. Results of this preliminary pilot study showed that the proposed event detector for accelerometry signals is a feasible tool to detect abnormal respiratory events, such as apneas and hypopneas, and has potential to be included in smartphone-based systems for OSA assessment.

JTD Keywords: Sleep apnea, Detectors, Pulse oximetry, Monitoring, Manuals, Band-pass filters, Pulse oximeter

Castillo-Escario, Y., Ferrer-Lluis, I., Montserrat, J. M., Jané, R., (2019). Automatic silence events detector from smartphone audio aignals: A pilot mHealth system for sleep apnea monitoring at home Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 4982-4985

Obstructive sleep apnea (OSA) is a prevalent disease, but most patients remain undiagnosed and untreated. Recently, mHealth tools are being proposed to screen OSA patients at home. In this work, we analyzed full-night audio signals recorded with a smartphone microphone. Our objective was to develop an automatic detector to identify silence events (apneas or hypopneas) and compare its performance to a commercial portable system for OSA diagnosis (ApneaLink™, ResMed). To do that, we acquired signals from three subjects with both systems simultaneously. A sleep specialist marked the events on smartphone and ApneaLink signals. The automatic detector we developed, based on the sample entropy, identified silence events similarly than manual annotation. Compared to ApneaLink, it was very sensitive to apneas (detecting 86.2%) and presented an 83.4% positive predictive value, but it missed about half the hypopnea episodes. This suggests that during some hypopneas the flow reduction is not reflected in sound. Nevertheless, our detector accurately recognizes silence events, which can provide valuable respiratory information related to the disease. These preliminary results show that mHealth devices and simple microphones are promising non-invasive tools for personalized sleep disorders management at home.

JTD Keywords: Detectors, Manuals, Sleep apnea, Microphones, Labeling, Hospitals

Garcia-Castellote, D., Torres, A., Estrada, L., Sarlabous, L., Jane, R., (2017). Evaluation of indirect measures of neural inspiratory time from invasive and noninvasive recordings of respiratory activity Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 341-344

Measuring diaphragmatic electromyography (EMGdi) provides an indirect quantification of neural respiratory drive and allows the delimitation of diaphragm neural activation and deactivation during inspiration. EMGdi recordings have been incorporated in novel modes of assisted mechanical ventilation, such as neurally adjusted ventilatory assist (NAVA), to trigger and cycle-off the ventilator. The EMGdi signal improves the assistance delivered by more conventional ventilatory modes, in which the ventilator is synchronized with the patient employing a pneumatic triggering. In this work, we evaluate the time delay between the onset and offset of inspiratory activity estimated from EMGdi and three respiratory mechanical signals: the respiratory flow (FL), the transdiaphragmatic pressure (Pdi) and the diaphragm length (Ldi) signals. To this purpose, these signals were acquired in three mongrel dogs surgically instrumented under general anesthesia. Onsets and offsets were estimated manually and by automatic algorithms on these signals. The highest delays were obtained between EMGdi and FL (100 ms) while the lowest delays were obtained between EMGdi and Pdi (8 ms). Moreover, differences between manual and automatic estimations showed a mean absolute error lower than 45 ms. In conclusion, our study points out that both EMGdi and Pdi signals detect the onset and offset of inspiratory activity earlier than the FL signal, and would therefore be better for the improvement of patient-ventilator synchrony.

JTD Keywords: Estimation, Ventilation, Anesthesia, Dogs, Manuals, Power harmonic filters