by Keyword: Anesthesia
van der Lande, Glenn J M, Casas-Torremocha, Diana, Manasanch, Arnau, Dalla Porta, Leonardo, Gosseries, Olivia, Alnagger, Naji, Barra, Alice, Mejias, Jorge F, Panda, Rajanikant, Riefolo, Fabio, Thibaut, Aurore, Bonhomme, Vincent, Thirion, Bertrand, Clasca, Francisco, Gorostiza, Pau, Sanchez-Vives, Maria V, Deco, Gustavo, Laureys, Steven, Zamora-Lopez, Gorka, Annen, Jitka, (2024). Brain state identification and neuromodulation to promote recovery of consciousness Brain Commun 6, fcae362
Experimental and clinical studies of consciousness identify brain states (i.e. quasi-stable functional cerebral organization) in a non-systematic manner and largely independent of the research into brain state modulation. In this narrative review, we synthesize advances in the identification of brain states associated with consciousness in animal models and physiological (sleep), pharmacological (anaesthesia) and pathological (disorders of consciousness) states of altered consciousness in humans. We show that in reduced consciousness the frequencies in which the brain operates are slowed down and that the pattern of functional communication is sparser, less efficient, and less complex. The results also highlight damaged resting-state networks, in particular the default mode network, decreased connectivity in long-range connections and especially in the thalamocortical loops. Next, we show that therapeutic approaches to treat disorders of consciousness, through pharmacology (e.g. amantadine, zolpidem), and (non-) invasive brain stimulation (e.g. transcranial direct current stimulation, deep brain stimulation) have shown partial effectiveness in promoting consciousness recovery. Although some features of conscious brain states may improve in response to neuromodulation, targeting often remains non-specific and does not always lead to (behavioural) improvements. The fields of brain state identification and neuromodulation of brain states in relation to consciousness are showing fascinating developments that, when integrated, might propel the development of new and better-targeted techniques for disorders of consciousness. We here propose a therapeutic framework for the identification and modulation of brain states to facilitate the interaction between the two fields. We propose that brain states should be identified in a predictive setting, followed by theoretical and empirical testing (i.e. in animal models, under anaesthesia and in patients with a disorder of consciousness) of neuromodulation techniques to promote consciousness in line with such predictions. This framework further helps to identify where challenges and opportunities lay for the maturation of brain state research in the context of states of consciousness. It will become apparent that one angle of opportunity is provided through the addition of computational modelling. Finally, it aids in recognizing possibilities and obstacles for the clinical translation of these diagnostic techniques and neuromodulation treatment options across both the multimodal and multi-species approaches outlined throughout the review.
JTD Keywords: (disorders of) consciousness, Anaesthesia, Animal model, Animal models, Area induces reanimation, Brain states, Direct-current stimulation, Disorder, Electrical-stimulation, Functional connectivity, General-anesthesia, Neuromodulation, Propofol-induced loss, Thalamic-stimulation, Transcranial magnetic stimulation, Vegetative state
Garcia-Castellote, D., Torres, A., Estrada, L., Sarlabous, L., Jane, R., (2017). Evaluation of indirect measures of neural inspiratory time from invasive and noninvasive recordings of respiratory activity Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 341-344
Measuring diaphragmatic electromyography (EMGdi) provides an indirect quantification of neural respiratory drive and allows the delimitation of diaphragm neural activation and deactivation during inspiration. EMGdi recordings have been incorporated in novel modes of assisted mechanical ventilation, such as neurally adjusted ventilatory assist (NAVA), to trigger and cycle-off the ventilator. The EMGdi signal improves the assistance delivered by more conventional ventilatory modes, in which the ventilator is synchronized with the patient employing a pneumatic triggering. In this work, we evaluate the time delay between the onset and offset of inspiratory activity estimated from EMGdi and three respiratory mechanical signals: the respiratory flow (FL), the transdiaphragmatic pressure (Pdi) and the diaphragm length (Ldi) signals. To this purpose, these signals were acquired in three mongrel dogs surgically instrumented under general anesthesia. Onsets and offsets were estimated manually and by automatic algorithms on these signals. The highest delays were obtained between EMGdi and FL (100 ms) while the lowest delays were obtained between EMGdi and Pdi (8 ms). Moreover, differences between manual and automatic estimations showed a mean absolute error lower than 45 ms. In conclusion, our study points out that both EMGdi and Pdi signals detect the onset and offset of inspiratory activity earlier than the FL signal, and would therefore be better for the improvement of patient-ventilator synchrony.
JTD Keywords: Estimation, Ventilation, Anesthesia, Dogs, Manuals, Power harmonic filters
Jané, R., Lazaro, J., Ruiz, P., Gil, E., Navajas, D., Farre, R., Laguna, P., (2013). Obstructive Sleep Apnea in a rat model: Effects of anesthesia on autonomic evaluation from heart rate variability measures CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 1011-1014
Rat model of Obstructive Sleep Apnea (OSA) is a realistic approach for studying physiological mechanisms involved in sleep. Rats are usually anesthetized and autonomic nervous system (ANS) could be blocked. This study aimed to assess the effect of anesthesia on ANS activity during OSA episodes. Seven male Sprague-Dawley rats were anesthetized intraperitoneally with urethane (1g/kg). The experiments were conducted applying airway obstructions, simulating 15s-apnea episodes for 15 minutes. Five signals were acquired: respiratory pressure and flow, SaO2, ECG and photoplethysmography (PPG). In total, 210 apnea episodes were studied. Normalized power spectrum of Pulse Rate Variability (PRV) was analyzed in the Low Frequency (LF) and High Frequency (HF) bands, for each episode in consecutive 15s intervals (before, during and after the apnea). All episodes showed changes in respiratory flow and SaO2 signal. Conversely, decreases in the amplitude fluctuations of PPG (DAP) were not observed. Normalized LF presented extremely low values during breathing (median=7,67%), suggesting inhibition of sympathetic system due to anesthetic effect. Subtle increases of LF were observed during apnea. HRV and PPG analysis during apnea could be an indirect tool to assess the effect and deep of anesthesia.
JTD Keywords: electrocardiography, fluctuations, medical disorders, medical signal detection, medical signal processing, neurophysiology, photoplethysmography, pneumodynamics, sleep, ECG, SaO2 flow, SaO2 signal, airway obstructions, amplitude fluctuations, anesthesia effects, anesthetized nervous system, autonomic evaluation, autonomic nervous system, breathing, heart rate variability, high-frequency bands, low-frequency bands, male Sprague-Dawley rats, normalized power spectrum, obstructive sleep apnea, photoplethysmography, physiological mechanisms, pulse rate variability, rat model, respiratory flow, respiratory pressure, signal acquisition, sympathetic system inhibition, time 15 min, time 15 s, Abstracts, Atmospheric modeling, Computational modeling, Electrocardiography, Rats, Resonant frequency