DONATE

Publications

by Keyword: Metal nanoparticle

Cascione M, Rizzello L, Manno D, Serra A, De Matteis V, (2022). Green Silver Nanoparticles Promote Inflammation Shutdown in Human Leukemic Monocytes Materials (Basel) 15, 775

The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer properties of Ag NPs having been widely demonstrated, there are still few studies concerning their involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends on the synthetic route used in the NPs production, in which toxic reagents are employed. In this work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction and capping agents. A careful physicochemical characterization was carried out showing spherical and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points (24 h and 48 h). Our results showed a clear difference in Nuclear Factor ?B (NF-?b) activation, Interleukins 6–8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-? (TNF-?) and Cyclooxygenase-2 (COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated by macrophages compared to conventional Ag NPs which induced the activation of all the factors mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in cell viability. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: activation, biosynthesis, gold nanoparticles, green route, inflammation response, mechanism, metal, nanotechnology, physico-chemical properties, raman-spectroscopy, resonance, silver nanoparticles, surface, Biomedical fields, Cell culture, Cell death, Chemical activation, Chemical routes, Conventional synthesis, Diseases, Green route, Inflammation response, Inflammatory response, Macrophages, Metal nanoparticles, Nf-kappa-b, Pathology, Physico-chemical properties, Physicochemical property, Property, Silver nanoparticles, Sodium compounds, Synthetic routes, Toxic reagents


Blanco-Fernandez, B, Castano, O, Mateos-Timoneda, MA, Engel, E, Perez-Amodio, S, (2021). Nanotechnology Approaches in Chronic Wound Healing Advances In Wound Care 10, 234-256

Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.

JTD Keywords: chronic, diabetes, liposomes, nanofibers, nanoparticles, Chronic, Chronic wound, Diabetes, Diabetic wound, Diabetic-rats, Dressings, Drug mechanism, Extracellular-matrix, Growth-factor, Human, In-vitro, Liposome, Liposomes, Mesenchymal stem-cells, Metal nanoparticle, Nanofiber, Nanofibers, Nanofibrous scaffolds, Nanoparticles, Nanotechnology, Nonhuman, Polyester, Polymer, Polysaccharide, Priority journal, Protein, Review, Self assembled protein nanoparticle, Silk fibroin, Skin wounds, Wound healing, Wound healing promoting agent