by Keyword: Methionine

Duro-Castano, Aroa, Rodríguez-Arco, Laura, Ruiz-Pérez, Lorena, De Pace, Cesare, Marchello, Gabriele, Noble-Jesus, Carlos, Battaglia, Giuseppe, (2021). One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles Biomacromolecules 22, 5052-5064

Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.

JTD Keywords: alpha-amino-acid, hydrogels, leuchs anhydrides, platform, polypeptides, transformation, triggered cargo release, Amino acids, Amphiphilics, Biocompatibility, Biodegradability, Block lengths, Controlled drug delivery, Dimethyl sulfoxide, Ethylene, Gels, Hydrophobicity, Medical nanotechnology, Methionine, Micelles, Morphology, One-pot synthesis, Organic solvents, Oxidation, Physiological condition, Polyethylene oxides, Post-polymerization, Ring-opening polymerization, Scaffolds (biology), Self assembly, Stimuli-responsive properties, Supramolecular chemistry, Supramolecular gels, Supramolecular micelles, Wormlike micelle

Klein, S., Schierwagen, R., Uschner, F. E., Trebicka, J., (2017). Mouse and rat models of induction of hepatic fibrosis and assessment of portal hypertension Fibrosis (Methods in Molecular Biology) (ed. Rittié, L.), Humana Press (New York, USA) 1627, 91-116

Portal hypertension either develops due to progressive liver fibrosis or is the consequence of vascular liver diseases such as portal vein thrombosis or non-cirrhotic portal hypertension. This chapter focuses on different rodent models of liver fibrosis with portal hypertension and also in few non-cirrhotic portal hypertension models. Importantly, after the development of portal hypertension, the proper assessment of drug effects in the portal and systemic circulation should be discussed. The last part of the chapter is dedicated in these techniques to assess the in vivo hemodynamics and the ex vivo techniques of the isolated liver perfusion and vascular contractility.

JTD Keywords: Aortic ring contraction, Bile duct ligation, Carbon tetrachloride, Colored microsphere technique, High-fat diet, Isolated in situ liver perfusion, Methionine-choline-deficient diet, Partial portal vein ligation, Portal hypertension

Le Roux, D., Burger, P. B., Niemand, J., Grobler, A., Urbán, P., Fernàndez-Busquets, X., Barker, R. H., Serrano, A. E., I. Louw, A., Birkholtz, L. M., (2014). Novel S-adenosyl-L-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic Plasmodium falciparum parasites International Journal for Parasitology: Drugs and Drug Resistance , 4, (1), 28-36

S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in Plasmodium falciparum parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profiles and activity against related parasites, Trypanosoma brucei. Here, these derivatives were assayed for inhibition of AdoMetDC from P. falciparum parasites and the methylated derivative, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]methylamino}-5'-deoxyadenosine (Genz-644131) was shown to be the most active. The in vitro efficacy of Genz-644131 was markedly increased by nanoencapsulation in immunoliposomes, which specifically targeted intraerythrocytic P. falciparum parasites.

JTD Keywords: Immunoliposomes, Plasmodium, Polyamines, S-adenosyl-l-methionine decarboxylase