by Keyword: Molecular structure
Perez-Madrigala, MM, Gilb, AM, Casanovas, J, Jimenez, AI, Macor, LP, Aleman, C, (2022). Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups Colloids And Surfaces B-Biointerfaces 216, 112522
Peptide derivatives and, most specifically, their self-assembled supramolecular structures are being considered in the design of novel biofunctional materials. Although the self-assembly of triphenylalanine homopeptides has been found to be more versatile than that of homopeptides containing an even number of residues (i.e. diphe-nylalanine and tetraphenylalanine), only uncapped triphenylalanine (FFF) and a highly aromatic analog blocked at both the N-and C-termini with fluorenyl-containing groups (Fmoc-FFF-OFm), have been deeply studied before. In this work, we have examined the self-assembly of a triphenylalanine derivative bearing 9-fluorenylme-thyloxycarbonyl and benzyl ester end-capping groups at the N-and C-termini, respectively (Fmoc-FFF-OBzl). The antiparallel arrangement clearly dominates in beta-sheets formed by Fmoc-FFF-OBzl, whereas the parallel and antiparallel dispositions are almost isoenergetic in Fmoc-FFF-OFm beta-sheets and the parallel one is slightly favored for FFF. The effects of both the peptide concentration and the mediu m on the self-assembly process have been examined considering Fmoc-FFF-OBzl solutions in a wide variety of solvent:co-solvent mixtures. In addi-tion, Fmoc-FFF-OBzl supramolecular structures have been compared to those obtained for FFF and Fmoc-FFF-OFm under identical experimental conditions. The strength of pi-pi stacking interactions involving the end-capping groups plays a crucial role in the nucleation and growth of supramolecular structures, which de-termines the resulting morphology. Finally, the influence of a non-invasive external stimulus, ultrasounds, on the nucleation and growth of supramolecular structures has been examined. Overall, FFF-based peptides provide a wide range of supramolecular structures that can be of interest in the biotechnological field.
JTD Keywords: aromatic interactions, beta-sheet, hierarchical structures, phenylalanine homopeptides, supramolecular structures, Amino-acids, Aromatic interactions, Beta-sheet, Fmoc, Hierarchical struc tures, Hydrogels, Phenylalanine homopeptides, Solvent, Spectroscopy, Supramolecular structures, Triphenylalanine
Riefolo, F, Sortino, R, Matera, C, Claro, E, Preda, B, Vitiello, S, Traserra, S, Jimenez, M, Gorostiza, P, (2021). Rational Design of Photochromic Analogues of Tricyclic Drugs Journal Of Medicinal Chemistry 64, 9259-9270
Tricyclic chemical structures are the core of many important drugs targeting all neurotransmitter pathways. These medicines enable effective therapies to treat from peptic ulcer disease to psychiatric disorders. However, when administered systemically, they cause serious adverse effects that limit their use. To obtain localized and on-demand pharmacological action using light, we have designed photoisomerizable ligands based on azobenzene that mimic the tricyclic chemical structure and display reversibly controlled activity. Pseudo-analogues of the tricyclic antagonist pirenzepine demonstrate that this is an effective strategy in muscarinic acetylcholine receptors, showing stronger inhibition upon illumination both in vitro and in cardiac atria ex vivo. Despite the applied chemical modifications to make pirenzepine derivatives sensitive to light stimuli, the most potent candidate of the set, cryptozepine-2, maintained a moderate but promising M-1 vs M-2 subtype selectivity. These photoswitchable crypto-azologs of tricyclic drugs might open a general way to spatiotemporally target their therapeutic action while reducing their systemic toxicity and adverse effects.
JTD Keywords: Binding, Dose-response relationship, drug, Drug design, Humans, M1, Molecular structure, Muscarinic antagonists, Pirenzepine, Rat-brain, Receptor, Receptors, muscarinic, Structure-activity relationship
Prischich, D, Gomila, AMJ, Milla-Navarro, S, Sanguesa, G, Diez-Alarcia, R, Preda, B, Matera, C, Batlle, M, Ramírez, L, Giralt, E, Hernando, J, Guasch, E, Meana, JJ, de la Villa, P, Gorostiza, P, (2021). Adrenergic Modulation With Photochromic Ligands Angewandte Chemie (International Ed. Print) 60, 3625-3631
© 2020 Wiley-VCH GmbH Adrenoceptors are ubiquitous and mediate important autonomic functions as well as modulating arousal, cognition, and pain on a central level. Understanding these physiological processes and their underlying neural circuits requires manipulating adrenergic neurotransmission with high spatio-temporal precision. Here we present a first generation of photochromic ligands (adrenoswitches) obtained via azologization of a class of cyclic amidines related to the known ligand clonidine. Their pharmacology, photochromism, bioavailability, and lack of toxicity allow for broad biological applications, as demonstrated by controlling locomotion in zebrafish and pupillary responses in mice.
JTD Keywords: adrenergic receptors, azo compounds, neurotransmitters, photochromism, Adrenergic agents, Adrenergic receptors, Animals, Azo compounds, Chromogenic compounds, Ligands, Mice, Mice, nude, Molecular structure, Neurotransmitters, Photochromism, Photopharmacology, Receptors, adrenergic, Zebrafish