by Keyword: Photochromism
Matera, C, Calvé, P, Casadó-Anguera, V, Sortino, R, Gomila, AMJ, Moreno, E, Gener, T, Delgado-Sallent, C, Nebot, P, Costazza, D, Conde-Berriozabal, S, Masana, M, Hernando, J, Casadó, V, Puig, MV, Gorostiza, P, (2022). Reversible Photocontrol of Dopaminergic Transmission in Wild-Type Animals International Journal Of Molecular Sciences 23, 10114
Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.
JTD Keywords: azobenzene, behavior, brainwave, d-1, dopamine, gpcr, in vivo electrophysiology, inhibitors, optogenetics, optopharmacology, photochromism, photopharmacology, photoswitch, stimulation, zebrafish, Animals, Animals, wild, Azobenzene, Behavior, Brainwave, Dopamine, Gpcr, In vivo electrophysiology, Ligands, Mice, Optogenetics, Optopharmacology, Photochromism, Photopharmacology, Photoswitch, Receptors, Synaptic transmission, Zebrafish
Prischich, D, Gomila, AMJ, Milla-Navarro, S, Sanguesa, G, Diez-Alarcia, R, Preda, B, Matera, C, Batlle, M, Ramírez, L, Giralt, E, Hernando, J, Guasch, E, Meana, JJ, de la Villa, P, Gorostiza, P, (2021). Adrenergic Modulation With Photochromic Ligands Angewandte Chemie (International Ed. Print) 60, 3625-3631
© 2020 Wiley-VCH GmbH Adrenoceptors are ubiquitous and mediate important autonomic functions as well as modulating arousal, cognition, and pain on a central level. Understanding these physiological processes and their underlying neural circuits requires manipulating adrenergic neurotransmission with high spatio-temporal precision. Here we present a first generation of photochromic ligands (adrenoswitches) obtained via azologization of a class of cyclic amidines related to the known ligand clonidine. Their pharmacology, photochromism, bioavailability, and lack of toxicity allow for broad biological applications, as demonstrated by controlling locomotion in zebrafish and pupillary responses in mice.
JTD Keywords: adrenergic receptors, azo compounds, neurotransmitters, photochromism, Adrenergic agents, Adrenergic receptors, Animals, Azo compounds, Chromogenic compounds, Ligands, Mice, Mice, nude, Molecular structure, Neurotransmitters, Photochromism, Photopharmacology, Receptors, adrenergic, Zebrafish
Darwish, Nadim., Aragonès, A. C., Darwish, T., Ciampi, S., Díez-Pérez, I., (2014). Multi-responsive photo- and chemo-electrical single-molecule switches Nano Letters 14, (12), 7064-7070
Incorporating molecular switches as the active components in nanoscale electrical devices represents a current challenge in molecular electronics. It demands key requirements that need to be simultaneously addressed including fast responses to external stimuli and stable attachment of the molecules to the electrodes while mimicking the operation of conventional electronic components. Here, we report a single-molecule switching device that responds electrically to optical and chemical stimuli. A light pointer or a chemical signal can rapidly and reversibly induce the isomerization of bifunctional spiropyran derivatives in the bulk reservoir and, consequently, switch the electrical conductivity of the single-molecule device between a low and a high level. The spiropyran derivatives employed are chemically functionalized such that they can respond in fast but practical time scales. The unique multistimuli response and the synthetic versatility to control the switching schemes of this single-molecule device suggest spiropyran derivatives as key candidates for molecular circuitry.
JTD Keywords: Molecular Electronics, Multi-Responsive Molecular Switches, Photo- and Chemo-Switches Spiropyran, Single-Molecule Conductance, STM Break-Junction, Electronic equipment, Isomerization, Molecular electronics, Photochromism, Electrical conductivity, Electronic component, Molecular switches, Single-molecule conductances, Single-molecule devices, Spiropyran derivatives, Spiropyrans, STM Break-Junction, Molecules