by Keyword: Nanoimprint lithography
Lozano-Hernández, N, Llanos, GP, Comet, CS, del Valle, LJ, Puiggali, J, Fontdecaba, E, (2022). Micro- and Nanotexturization of Liquid Silicone Rubber Surfaces by Injection Molding Using Hybrid Polymer Inlays Macromolecular Materials And Engineering 307, 2100741
Micro- and nanotexturization of surfaces can give to the parts different advanced functionalities, such as superhydrophobicity, self-cleaning, or antibacterial capabilities. These advanced properties in combination with the biocompatibility of Liquid Silicone Rubber are an interesting approach for obtaining high-performance medical devices. The industrial production of surface textures in polymeric materials is through the replication technique, and the best option to attain a high production rate is injection molding. Moreover, its low viscosity during processing can provide an accurate replication capacity by the easy filling by capillarity of the microtextures. An innovative replicating technique for Liquid Silicone Rubber is presented by studying the replication of different shaped textures within a diameter range of between 2 and 50 mu m. The copying process consists in the overmolding of a textured polymeric inlay obtained by nanoimprint lithography. At the end of the process, a textured part is obtained, while the imprinted film remains in the mold. The injection molding parameters are optimized to increase the replication accuracy, and their effect on texture replicability is analyzed and discussed. Finally, it is shown that the textured surfaces improve their wettability behavior, which is a necessary and important characteristic in the development of biomedical devices.
JTD Keywords: Cross-linking density, Injection molding, Microtextures, Nanoimprint lithography, Polymeric inlays, Silicone rubber, Stamp, Wettability
Martínez, Elena, Pla, M., Samitier, J., (2012). Micro/nanopatterning of proteins using a nanoimprint-based contact printing technique Nanotechnology in Regenerative Medicine - Methods and Protocols (Methods in Molecular Biology) (ed. Navarro, M., Planell, J. A.), Springer (New York, USA) 811, 79-87
Micro and nanoscale protein patterning based on microcontact printing technique on large substrates have often resolution problems due to roof collapse of the poly(dimethylsiloxane) (PDMS) stamps used. Here, we describe a technique that overcomes these issues by using instead a stamp made of poly(methyl methacrylate) (PMMA), a much more rigid polymer that do not collapse even using stamps with very high aspect ratios (up to 300:1). Conformal contact between the stamp and the substrate is achieved because of the homogeneous pressure applied via the nanoimprint lithography instrument, and it has allowed us to print lines of protein 150 nm wide, at a 400 nm period. This technique, therefore, provides an excellent method for the direct printing of high-density submicrometer scale patterns, or, alternatively, micro/nanopatterns spaced at large distances.
JTD Keywords: Microcontact printing, Nanoimprint lithography, Poly(methyl methacrylate), Protein
Caballero, D., Samitier, J., Errachid, A., (2009). Submerged nanocontact printing (SnCP) of thiols Journal of Nanoscience and Nanotechnology , 9, (11), 6478-6482
Biological patterned surfaces having sub-micron scale resolution are of great importance in many fields of life science and biomedicine. Different techniques have been proposed for surface patterning at the nanoscale. However, most of them present some limitations regarding the patterned area size or are time-consuming. Micro/nanocontact printing is the most representative soft lithography-based technique for surface patterning at the nanoscale. Unfortunately, conventional micro/nanocontact printing also suffers from problems such as diffusion and stamp collapsing that limit pattern resolution. To overcome these problems, a simple way of patterning thiols under liquid media using submerged nanocontact printing (SnCP) over large areas (similar to cm(2)) achieving nanosize resolution is presented. The technique is also low cost and any special equipment neither laboratory conditions are required. Nanostructured poly(dimethyl siloxane) stamps are replicated from commercially available digital video disks. SnCP is used to stamp patterns of 200 nm 1-octadecanethiol lines in liquid media, avoiding ink diffusion and stamp collapsing, over large areas on gold substrates compared with conventional procedures. Atomic force microscopy measurements reveal that the patterns have been successfully transferred with high fidelity. This is an easy, direct, effective and low cost methodology for molecule patterning immobilization which is of interest in those areas that require nanoscale structures over large areas, such as tissue engineering or biosensor applications.
JTD Keywords: Submerged Nanocontact Printing, Replica Molding, Nanopatterning, Large Area, Dip-pen nanolithography, High-aspect-ratio, Soft lithography, Submicronscale, Nanoimprint lithography, Thin-film, Surfaces, Fabrication, Proteins, Nanofabrication
Mills, C. A., Fernandez, Javier G., Errachid, A., Samitier, J., (2008). The use of high glass temperature polymers in the production of transparent, structured surfaces using nanoimprint lithography Microelectronic Engineering , 85, (9), 1897-1901
Polymers with high glass transition temperatures, fluorinated ethylene propylene copolymer (FEP) and poly(ethylene naphthalate) (PEN), have been used in imprint lithography as a protective support layer and as a secondary mould, to imprint superficial structures into a polymer with a lower glass transition temperature, namely poly(methyl methacrylate) (PMMA). As a support layer, FEP replaces fragile silicon based supports for the production of freestanding, structured sheets of PMMA, useful, for example, in biomedical applications where transmittance optical microscopy is required. Secondary PEN moulds, produced by imprinting using silicon-based primary moulds, have been used to transfer sub-micrometer tall structures to a freestanding PMMA sheet. Similarly, hole structures, with different dimensions, have been embossed in both sides of a PMMA sheet simultaneously.
JTD Keywords: Polymer engineering, Embossing, Nanoimprint lithography, Biomedical applications