DONATE

Publications

by Keyword: Nanopattern

Casanellas, I, Jiang, HK, David, CM, Vida, Y, Pérez-Inestrosa, E, Samitier, J, Lagunas, A, (2022). Substrate adhesion determines migration during mesenchymal cell condensation in chondrogenesis Journal Of Cell Science 135, 260241

Mesenchymal condensation is a prevalent morphogenetic transition that is essential in chondrogenesis. However, the current understanding of condensation mechanisms is limited. In vivo, progenitor cells directionally migrate from the surrounding loose mesenchyme towards regions of increasing matrix adherence (the condensation centers), which is accompanied by the upregulation of fibronectin. Here, we focused on the mechanisms of cell migration during mesenchymal cell condensation and the effects of matrix adherence. Dendrimer-based nanopatterns of the cell-adhesive peptide arginine-glycine-aspartic acid (RGD), which is present in fibronectin, were used to regulate substrate adhesion. We recorded collective and single-cell migration of mesenchymal stem cells, under chondrogenic induction, using live-cell imaging. Our results show that the cell migration mode of single cells depends on substrate adhesiveness, and that cell directionality controls cell condensation and the fusion of condensates. Inhibition experiments revealed that cell-cell interactions mediated by N-cadherin (also known as CDH2) are also pivotal for directional migration of cell condensates by maintaining cell-cell cohesion, thus suggesting a fine interplay between cell-matrix and cell-cell adhesions. Our results shed light on the role of cell interactions with a fibronectin-depositing matrix during chondrogenesis in vitro, with possible applications in regenerative medicine. This article has an associated First Person interview with the first author of the paper.© 2022. Published by The Company of Biologists Ltd.

JTD Keywords: alpha-v-beta-3, arginine-glycine-aspartic acid, chondrogenesis, dynamics, expression, fibronectin, gastrulation, involvement, mechanisms, mesenchymal condensation, model, nanopatterned substrates, rgd, Arginine-glycine-aspartic acid, Cell migration, Chondrogenesis, Mesenchymal condensation, N-cadherin, Nanopatterned substrates, Rgd


Martínez-Miguel, M, Castellote-Borrell, M, Köber, M, Kyvik, AR, Tomsen-Melero, J, Vargas-Nadal, G, Muñoz, J, Pulido, D, Cristóbal-Lecina, E, Passemard, S, Royo, M, Mas-Torrent, M, Veciana, J, Giannotti, MI, Guasch, J, Ventosa, N, Ratera, I, (2022). Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion Acs Applied Materials & Interfaces 14, 48179-48193

The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.

JTD Keywords: activation, arg-gly-asp (rgd), cell adhesion, extracellular-matrix, growth, integrins, ligands, nanopatterns, quatsomes, scaffolds, self-assembled monolayers, surface engineering, tissue engineering, Arg-gly-asp (rgd), Cell adhesion, Integrins, Nano-structured surfaces, Nanovesicles, Quatsomes, Self-assembled monolayers, Surface engineering, Tissue engineering


Casanellas, I, Samitier, J, Lagunas, A, (2022). Recent advances in engineering nanotopographic substrates for cell studies Frontiers In Bioengineering And Biotechnology 10, 1002967

Cells sense their environment through the cell membrane receptors. Interaction with extracellular ligands induces receptor clustering at the nanoscale, assembly of the signaling complexes in the cytosol and activation of downstream signaling pathways, regulating cell response. Nanoclusters of receptors can be further organized hierarchically in the cell membrane at the meso- and micro-levels to exert different biological functions. To study and guide cell response, cell culture substrates have been engineered with features that can interact with the cells at different scales, eliciting controlled cell responses. In particular, nanoscale features of 1-100 nm in size allow direct interaction between the material and single cell receptors and their nanoclusters. Since the first "contact guidance" experiments on parallel microstructures, many other studies followed with increasing feature resolution and biological complexity. Here we present an overview of the advances in the field summarizing the biological scenario, substrate fabrication techniques and applications, highlighting the most recent developments.Copyright © 2022 Casanellas, Samitier and Lagunas.

JTD Keywords: cell response, density, differentiation, lithography, micro, nanofabrication, nanopatterning, nanopatterns, nanoscale, nanotopography, organization, photolithography, Cell response, Nanofabrication, Nanopatterning, Nanotopography, Plasma-membrane, Receptor nanoclustering


Casanellas, I, Lagunas, A, Vida, Y, Perez-Inestrosa, E, Rodriguez-Pereira, C, Magalhaes, J, Andrades, JA, Becerra, J, Samitier, J, (2022). Nanoscale ligand density modulates gap junction intercellular communication of cell condensates during chondrogenesis Nanomedicine 17, 775-791

Aim: To unveil the influence of cell-matrix adhesions in the establishment of gap junction intercellular communication (GJIC) during cell condensation in chondrogenesis. Materials & methods: Previously developed nanopatterns of the cell adhesive ligand arginine-glycine-aspartic acid were used as cell culture substrates to control cell adhesion at the nanoscale. In vitro chondrogenesis of mesenchymal stem cells was conducted on the nanopatterns. Cohesion and GJIC were evaluated in cell condensates. Results: Mechanical stability and GJIC are enhanced by a nanopattern configuration in which 90% of the surface area presents adhesion sites separated less than 70 nm, thus providing an onset for cell signaling. Conclusion: Cell-matrix adhesions regulate GJIC of mesenchymal cell condensates during in vitro chondrogenesis from a threshold configuration at the nanoscale.

JTD Keywords: arginine-glycine-aspartic acid, arginine–glycine–aspartic acid, cell adhesion, condensation, dendrimer-based nanopatterning, gap junction intercellular communication, Actin, Adhesion, Arginine-glycine-aspartic acid, Cell adhesion, Collagen, Condensation, Connexin-43, Dendrimer-based nanopatterning, Dynamics, Extracellular-matrix, Fibronectin, Gap junction intercellular communication, Mesenchymal stem cells, Permeability, Phenotype, Vinculin


Casanellas, Ignasi, Lagunas, Anna, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, J. A., Becerra, J., Samitier, Josep, (2020). The Janus role of adhesion in chondrogenesis International Journal of Molecular Sciences 21, (15), 5269

Tackling the first stages of the chondrogenic commitment is essential to drive chondrogenic differentiation to healthy hyaline cartilage and minimize hypertrophy. During chondrogenesis, the extracellular matrix continuously evolves, adapting to the tissue adhesive requirements at each stage. Here, we take advantage of previously developed nanopatterns, in which local surface adhesiveness can be precisely tuned, to investigate its effects on prechondrogenic condensation. Fluorescence live cell imaging, immunostaining, confocal microscopy and PCR analysis are used to follow the condensation process on the nanopatterns. Cell tracking parameters, condensate morphology, cell–cell interactions, mechanotransduction and chondrogenic commitment are evaluated in response to local surface adhesiveness. Results show that only condensates on the nanopatterns of high local surface adhesiveness are stable in culture and able to enter the chondrogenic pathway, thus highlighting the importance of controlling cell–substrate adhesion in the tissue engineering strategies for cartilage repair.

JTD Keywords: Dendrimer, Nanopatterning, RGD, Mesenchymal cell condensation, Cell–cell interactions, YAP, Chondrogenesis


Casanellas, Ignasi, Lagunas, Anna, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, José A., Becerra, José, Samitier, Josep, (2019). Matrix nanopatterning regulates mesenchymal differentiation through focal adhesion size and distribution according to cell fate Biomimetics Biomimetic Nanotechnology for Biomedical Applications (NanoBio&Med 2018) , MDPI (Barcelona, Spain) 4, (2), 43

Extracellular matrix remodeling plays a pivotal role during mesenchyme patterning into different lineages. Tension exerted from cell membrane receptors bound to extracellular matrix ligands is transmitted by the cytoskeleton to the cell nucleus inducing gene expression. Here, we used dendrimer-based arginine–glycine–aspartic acid (RGD) uneven nanopatterns, which allow the control of local surface adhesiveness at the nanoscale, to unveil the adhesive requirements of mesenchymal tenogenic and osteogenic commitments. Cell response was found to depend on the tension resulting from cell–substrate interactions, which affects nuclear morphology and is regulated by focal adhesion size and distribution.

JTD Keywords: Arginine–glycine–aspartic acid (RGD), Nanopattern, Mesenchymal stem cells, Tenogenesis, Osteogenesis, Cell nuclei, Focal adhesions


Casanellas, Ignasi, Lagunas, Anna, Tsintzou, Iro, Vida, Yolanda, Collado, Daniel, Pérez-Inestrosa, Ezequiel, Rodríguez-Pereira, Cristina, Magalhaes, Joana, Gorostiza, Pau, Andrades, José A., Becerra, José, Samitier, Josep, (2018). Dendrimer-based uneven nanopatterns to locally control surface adhesiveness: A method to direct chondrogenic differentiation Journal of Visualized Experiments Bioengineering, (131), e56347

Cellular adhesion and differentiation is conditioned by the nanoscale disposition of the extracellular matrix (ECM) components, with local concentrations having a major effect. Here we present a method to obtain large-scale uneven nanopatterns of arginine-glycine-aspartic acid (RGD)-functionalized dendrimers that permit the nanoscale control of local RGD surface density. Nanopatterns are formed by surface adsorption of dendrimers from solutions at different initial concentrations and are characterized by water contact angle (CA), X-ray photoelectron spectroscopy (XPS), and scanning probe microscopy techniques such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The local surface density of RGD is measured using AFM images by means of probability contour maps of minimum interparticle distances and then correlated with cell adhesion response and differentiation. The nanopatterning method presented here is a simple procedure that can be scaled up in a straightforward manner to large surface areas. It is thus fully compatible with cell culture protocols and can be applied to other ligands that exert concentration-dependent effects on cells.

JTD Keywords: Bioengineering, Dendrimer, Nanopattern, Arginine-Glycine-Aspartic Acid (RGD), Atomic Force Microscopy (AFM), Cell Adhesion, Mesenchymal Stem Cells (Mscs), Chondrogenesis


Gállego, Isaac, Manning, Brendan, Prades, Joan Daniel, Mir, Mònica, Samitier, Josep, Eritja, Ramon, (2017). DNA-origami-driven lithography for patterning on gold surfaces with sub-10 nm resolution Advanced Materials 29, 1603233

Gállego, Isaac, Manning, Brendan, Prades, Joan Daniel, Mir, Mónica, Samitier, Josep, Eritja, Ramon, (2017). DNA-Origami-Aided Lithography for Sub-10 Nanometer Pattern Printing Proceedings Eurosensors 2017 , MDPI (Paris, France) 1, (4), 325

We report the first DNA-based origami technique that can print addressable patterns on surfaces with sub-10 nm resolution. Specifically, we have used a two-dimensional DNA origami as a template (DNA origami stamp) to transfer DNA with pre-programmed patterns (DNA ink) on gold surfaces. The DNA ink is composed of thiol-modified staple strands incorporated at specific positions of the DNA origami stamp to create patterns upon thiol-gold bond formation on the surface (DNA ink). The DNA pattern formed is composed of unique oligonucleotide sequences, each of which is individually addressable. As a proof-of-concept, we created a linear pattern of oligonucleotide-modified gold nanoparticles complementary to the DNA ink pattern. We have developed an in silico model to identify key elements in the formation of our DNA origami-driven lithography and nanoparticle patterning as well as simulate more complex nanoparticle patterns on surfaces.

JTD Keywords: DNA nanotechnology, Lithography, Nanopatterning, Gold nanoparticles, Metasurfaces


Caballero, D., Samitier, J., Errachid, A., (2009). Submerged nanocontact printing (SnCP) of thiols Journal of Nanoscience and Nanotechnology , 9, (11), 6478-6482

Biological patterned surfaces having sub-micron scale resolution are of great importance in many fields of life science and biomedicine. Different techniques have been proposed for surface patterning at the nanoscale. However, most of them present some limitations regarding the patterned area size or are time-consuming. Micro/nanocontact printing is the most representative soft lithography-based technique for surface patterning at the nanoscale. Unfortunately, conventional micro/nanocontact printing also suffers from problems such as diffusion and stamp collapsing that limit pattern resolution. To overcome these problems, a simple way of patterning thiols under liquid media using submerged nanocontact printing (SnCP) over large areas (similar to cm(2)) achieving nanosize resolution is presented. The technique is also low cost and any special equipment neither laboratory conditions are required. Nanostructured poly(dimethyl siloxane) stamps are replicated from commercially available digital video disks. SnCP is used to stamp patterns of 200 nm 1-octadecanethiol lines in liquid media, avoiding ink diffusion and stamp collapsing, over large areas on gold substrates compared with conventional procedures. Atomic force microscopy measurements reveal that the patterns have been successfully transferred with high fidelity. This is an easy, direct, effective and low cost methodology for molecule patterning immobilization which is of interest in those areas that require nanoscale structures over large areas, such as tissue engineering or biosensor applications.

JTD Keywords: Submerged Nanocontact Printing, Replica Molding, Nanopatterning, Large Area, Dip-pen nanolithography, High-aspect-ratio, Soft lithography, Submicronscale, Nanoimprint lithography, Thin-film, Surfaces, Fabrication, Proteins, Nanofabrication