DONATE

Publications

by Keyword: Nanosheets

Fontana-Escartin, Adrian, Bertran, Oscar, Aleman, Carlos, (2024). Materials engineering in electrochemical biosensors: A review of cost-effective approaches to efficient biodetection Materials Today Communications 41, 111030

Electrochemical sensors are sophisticated devices capable of detecting a wide range of chemical compounds with exceptional sensitivity and efficiency. Their importance is particularly pronounced in biomedical applications, where the rapid and accurate detection of biomolecules such as dopamine (DA), glucose (G), and nicotinamide adenine dinucleotide (NADH) is crucial for early diagnosis and disease management. These biomarkers are key in monitoring and managing conditions like diabetes, Parkinson and Alzheimer diseases, and bacterial infections. This review provides a comprehensive overview of electrochemical biosensors, detailing the methodologies commonly used by researchers and the latest technological advancements that enable more efficient device development. In this regard, the focus is on the impact and trends of various materials utilized in the fabrication of electrochemical biosensors, including conducting polymers, ceramics, and carbon-based materials. By examining the state of the art, we explore how these materials contribute to enhanced performance and reliability. Furthermore, while the development of highly selective and sensitive nanocomposites has been a primary focus in the field, this review also highlights efforts toward creating cost-effective biosensors with rapid prototyping capabilities. Such innovations aim to maintain high efficacy in electrochemical detection while making advanced diagnostics more accessible. In conclusion, this study aims to inform researchers and professionals about the evolving materials landscape in electrochemical biosensing, offering insights into the future directions of this critical technology.

JTD Keywords: Biomolecules, Biosensor, Dopamine, Electroactive materials, Electrochemical sensors, Electrode, Glucose biosensor, Nanoparticles, Nanosheets, Oxidas, Sensor, Temperature, Transition-metal carbides, Uric-acid