DONATE

Publications

by Keyword: Near-field scanning optical microscopy (NSOM)

van Zanten, T. S., Cambi, A., Koopman, M., Joosten, B., Figdor, Carl G., Garcia-Parajo, M. F., (2009). Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion Proceedings of the National Academy of Sciences of the United States of America 106, (44), 18557-18562

Recruitment of receptor proteins to lipid rafts has been proposed as an important mechanism to regulate their cellular function. In particular, rafts have been implicated in regulation of integrin-mediated cell adhesion, although the underlying mechanism remains elusive. We used single-molecule near-field optical microscopy (NSOM) with localization accuracy of approximately 3 nm, to capture the spatio-functional relationship between the integrin LFA-1 and raft components (GPI-APs) on immune cells. Dual color nanoscale imaging revealed the existence of a nanodomain GPI-AP subpopulation that further concentrated in regions smaller than 250 nm, suggesting a hierarchical prearrangement of GPI-APs on resting monocytes. We previously demonstrated that in quiescent monocytes, LFA-1 preorganizes in nanoclusters. We now show that integrin nanoclusters are spatially different but reside proximal to GPI-AP nanodomains, forming hotspots on the cell surface. Ligand-mediated integrin activation resulted in an interconversion from monomers to nanodomains of GPI-APs and the generation of nascent adhesion sites where integrin and GPI-APs colocalized at the nanoscale. Cholesterol depletion significantly affected the reciprocal distribution pattern of LFA-1 and GPI-APs in the resting state, and LFA-1 adhesion to its ligand. As such, our data demonstrate the existence of nanoplatforms as essential intermediates in nascent cell adhesion. Since raft association with a variety of membrane proteins other than LFA-1 has been documented, we propose that hotspots regions enriched with raft components and functional receptors may constitute a prototype of nanoscale inter-receptor assembly and correspond to a generic mechanism to offer cells with privileged areas for rapid cellular function and responses to the outside world.

JTD Keywords: Integrin LFA-1, Membrane nanocompartments, Near-field scanning optical microscopy (NSOM), Single molecule detection


de Bakker, Barbel I., Bodnar, Andrea, van Dijk, Erik M. H. P., Vamosi, Gyorgy, Damjanovich, Sandor, Waldmann, Thomas A., van Hulst, Niek F., Jenei, Attila, Garcia-Parajo, M. F., (2008). Nanometer-scale organization of the alpha subunits of the receptors for IL2 and IL15 in human T lymphoma cells Journal of Cell Science 121, (5), 627-633

Interleukin 2 and interleukin 15 (IL2 and IL15, respectively) provide quite distinct contributions to T-cell-mediated immunity, despite having similar receptor composition and signaling machinery. As most of the proposed mechanisms underlying this apparent paradox attribute key significance to the individual {alpha}-chains of IL2 and IL15 receptors, we investigated the spatial organization of the receptors IL2R{alpha} and IL15R{alpha} at the nanometer scale expressed on a human CD4+ leukemia T cell line using single-molecule-sensitive near-field scanning optical microscopy (NSOM). In agreement with previous findings, we here confirm clustering of IL2R{alpha} and IL15R{alpha} at the submicron scale. In addition to clustering, our single-molecule data reveal that a non-negligible percentage of the receptors are organized as monomers. Only a minor fraction of IL2R{alpha} molecules reside outside the clustered domains, whereas [~]30% of IL15R{alpha} molecules organize as monomers or small clusters, excluded from the main domain regions. Interestingly, we also found that the packing densities per unit area of both IL2R{alpha} and IL15R{alpha} domains remained constant, suggesting a `building block' type of assembly involving repeated structures and composition. Finally, dual-color NSOM demonstrated co-clustering of the two {alpha}-chains. Our results should aid understanding the action of the IL2R-IL15R system in T cell function and also might contribute to the more rationale design of IL2R- or IL15R-targeted immunotherapy agents for treating human leukemia.

JTD Keywords: Near-field scanning optical microscopy (NSOM), Interleukin receptors IL2R, IL15R, Single-molecule detection, Nanometer-scale membrane organization