by Keyword: Outer-membrane
Bodrenko, I, Ceccarelli, M, Acosta-Gutierrez, S, (2023). The mechanism of an electrostatic nanofilter: overcoming entropy with electrostatics Physical Chemistry Chemical Physics 25, 26497-26506
General porins are nature's sieving machinery in the outer membrane of Gram-negative bacteria. Their unique hourglass-shaped architecture is highly conserved among different bacterial membrane proteins and other biological channels. These biological nanopores have been designed to protect the interior of the bacterial cell from leakage of toxic compounds while selectively allowing the entry of the molecules needed for cell growth and function. The mechanism of transport through porins is of utmost and direct interest for drug discovery, extending toward nanotechnology applications for blue energy, separations, and sequencing. Here we present a theoretical framework for analysing the filter of general porins in relation to translocating molecules with the aid of enhanced molecular simulations quantitatively. Using different electrostatic probes in the form of a series of related molecules, we describe the nature of this filter and how to finely tune permeability by exploiting electrostatic interactions between the pore and the translocating molecule. Eventually, we show how enhanced simulations constitute today a valid tool for characterising the mechanism and quantifying energetically the transport of molecules through nanopores. General porins are nature's sieving machinery in the outer membrane of Gram-negative bacteria. In the diffusive transport process of molecules, electrostatic interactions can help to decrease the entropic free energy barrier.
JTD Keywords: Channel, Diffusion barrier, Electric-field, Molecular-dynamics, Outer-membrane permeability, Permeation, Porins, Simulations, Translocation, Transport
Bernabeu, M, Aznar, S, Prieto, A, Huttener, M, Juarez, A, (2022). Differential Expression of Two Copies of the irmA Gene in the Enteroaggregative E. coli Strain 042 Microbiology Spectrum 10, e0045422
Gene duplications occur in prokaryotic genomes at a detectable frequency. In many instances, the biological function of the duplicates is unknown, and hence, the significance of the presence of multiple copies of these genes remains unclear.; Gene duplications significantly impact the gene repertoires of both eukaryotic and prokaryotic microorganisms. The genomes of pathogenic Escherichia coli strains share a group of duplicated genes whose function is mostly unknown. The irmA gene is one of the duplicates encoded in several pathogenic E. coli strains. The function of its gene product was investigated in the uropathogenic E. coli strain CFT073, which contains a single functional copy. The IrmA protein structure mimics that of human interleukin receptors and likely plays a role during infection. The enteroaggregative E. coli strain 042 contains two functional copies of the irmA gene. In the present work, we investigated their biological roles. The irmA_4509 allele is expressed under several growth conditions. Its expression is modulated by the global regulators OxyR and Hha, with optimal expression at 37 degrees C and under nutritional stress conditions. Expression of the irmA_2244 allele can only be detected when the irmA_4509 allele is knocked out. Differences in the promoter regions of both alleles account for their differential expression. Our results show that under several environmental conditions, the expression of the IrmA protein in strain 042 is dictated by the irmA_4509 allele. The irmA_2244 allele appears to play a backup role to ensure IrmA expression when the irmA_4509 allele loses its function. IMPORTANCE Gene duplications occur in prokaryotic genomes at a detectable frequency. In many instances, the biological function of the duplicates is unknown, and hence, the significance of the presence of multiple copies of these genes remains unclear. In pathogenic E. coli isolates, the irmA gene can be present either as a single copy or in two or more copies. We focused our work on studying why a different pathogenic E. coli strain encodes two functional copies of the irmA gene. We show that under several environmental conditions, one of the alleles dictates IrmA expression, and the second remains silent. The latter allele is only expressed when the former is silenced. The presence of more than one functional copy of the irmA gene in some pathogenic E. coli strains can result in sufficient expression of this virulence factor during the infection process.
JTD Keywords: 042, aec69, enteroaggregative e. coli, gene duplications, 042, Adaptation, Aec69, Aggregative adherence, Chromosomal genes, Coli, Duplication, Enteroaggregative e, Escherichia-coli, Evolution, Gene duplications, Hha/ymoa, Irma, Mechanism, Outer-membrane, Protein
Puiggalí-Jou, A, Molina, BG, Lopes-Rodrigues, M, Michaux, C, Perpète, EA, Zanuy, D, Aleman, C, (2021). Self-standing, conducting and capacitive biomimetic hybrid nanomembranes for selective molecular ion separation Physical Chemistry Chemical Physics 23, 16157-16164
Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 β-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching. The two nanoperforated PLA layers are separated by an electroactive layer, which is successfully electropolymerized by introducing a conducting sacrificial substrate under the first PLA nanosheet. Finally, the nanomaterial is consolidated by immobilizing the VDAC36 protein, active as an ion channel, into the nanoperforations of the upper layer. The integration of the protein causes a significant reduction of the material resistance, which decreases from 21.9 to 3.9 kΩ cm2. Electrochemical impedance spectroscopy studies using inorganic ions and molecular metabolites (i.e.l-lysine and ATP) not only reveal that the hybrid films behave as electrochemical supercapacitors but also indicate the most appropriate conditions to obtain selective responses against molecular ions as a function of their charge. The combination of polymers and proteins is promising for the development of new devices for engineering, biotechnological and biomedical applications.
JTD Keywords: channels, evolution, filter, Outer-membrane proteins