by Keyword: P53

Park, D. E., Cheng, J., Berrios, C., Montero, J., Cortés-Cros, M., Ferretti, S., Arora, R., Tillgren, M. L., Gokhale, P. C., DeCaprio, J. A., (2019). Dual inhibition of MDM2 and MDM4 in virus-positive Merkel cell carcinoma enhances the p53 response Proceedings of the National Academy of Sciences of the United States of America 116, (3), 1027-1032

Merkel cell polyomavirus (MCV) contributes to approximately 80% of all Merkel cell carcinomas (MCCs), a highly aggressive neuroendocrine carcinoma of the skin. MCV-positive MCC expresses small T antigen (ST) and a truncated form of large T antigen (LT) and usually contains wild-type p53 (TP53) and RB (RB1). In contrast, virus-negative MCC contains inactivating mutations in TP53 and RB1. While the MCV-truncated LT can bind and inhibit RB, it does not bind p53. We report here that MCV LT binds to RB, leading to increased levels of ARF, an inhibitor of MDM2, and activation of p53. However, coexpression of ST reduced p53 activation. MCV ST recruits the MYC homologue MYCL (L-Myc) to the EP400 chromatin remodeler complex and transactivates specific target genes. We observed that depletion of EP400 in MCV-positive MCC cell lines led to increased p53 target gene expression. We suspected that the MCV ST–MYCL–EP400 complex could functionally inactivate p53, but the underlying mechanism was not known. Integrated ChIP and RNA-sequencing analysis following EP400 depletion identified MDM2 as well as CK1α, an activator of MDM4, as target genes of the ST–MYCL–EP400 complex. In addition, MCV-positive MCC cells expressed high levels of MDM4. Combining MDM2 inhibitors with lenalidomide targeting CK1α or an MDM4 inhibitor caused synergistic activation of p53, leading to an apoptotic response in MCV-positive MCC cells and MCC-derived xenografts in mice. These results support dual targeting of MDM2 and MDM4 in virus-positive MCC and other p53 wild-type tumors.

JTD Keywords: Casein kinase 1 alpha, Lenalidomide, MDM2-MDM4, Merkel cell carcinoma, P53

McLenachan, S., Menchon, C., Raya, A., Consiglio, A., Edel, M. J., (2012). Cyclin A(1) is essential for setting the pluripotent state and reducing tumorigenicity of induced pluripotent stem cells Stem Cells and Development , 21, (15), 2891-2899

The proper differentiation and threat of cancer rising from the application of induced pluripotent stem (iPS) cells are major bottlenecks in the field and are thought to be inherently linked to the pluripotent nature of iPS cells. To address this question, we have compared iPS cells to embryonic stem cells (ESCs), the gold standard of ground state pluripotency, in search for proteins that may improve pluripotency of iPS cells. We have found that when reprogramming somatic cells toward pluripotency, 1%-5% of proteins of 5 important cell functions are not set to the correct expression levels compared to ESCs, including mainly cell cycle proteins. We have shown that resetting cyclin A1 protein expression of early- passage iPS cells closer to the ground state pluripotent state of mouse ESCs improves the pluripotency and reduces the threat of cancer of iPS cells. This work is a proof of principle that reveals that setting expression of certain proteins correctly during reprogramming is essential for achieving ESC- state pluripotency. This finding would be of immediate help to those researchers in different fields of iPS cell work that specializes in cell cycle, apoptosis, cell adhesion, cell signaling, and cytoskeleton.

JTD Keywords: Self-renewal, IPS cells, Ground-state, C-MYC, Generation, Pathway, Disease, Mice, Link, P53