DONATE

Publications

by Keyword: Phagocytosis

Admella, J, Torrents, E, (2022). A Straightforward Method for the Isolation and Cultivation of Galleria mellonella Hemocytes International Journal Of Molecular Sciences 23, 13483

Galleria mellonella is an alternative animal model of infection. The use of this species presents a wide range of advantages, as its maintenance and rearing are both easy and inexpensive. Moreover, its use is considered to be more ethically acceptable than other models, it is conveniently sized for manipulation, and its immune system has multiple similarities with mammalian immune systems. Hemocytes are immune cells that help encapsulate and eliminate pathogens and foreign particles. All of these reasons make this insect a promising animal model. However, cultivating G. mellonella hemocytes in vitro is not straightforward and it has many difficult challenges. Here, we present a methodologically optimized protocol to establish and maintain a G. mellonella hemocyte primary culture. These improvements open the door to easily and quickly study the toxicity of nanoparticles and the interactions of particles and materials in an in vitro environment.

JTD Keywords: Bacteria, Cell culture, Galleria mellonella, Hemolin, Infection, Insect hemocytes, Larvae, Lepidoptera, Nanoparticle, Phagocytosis, Prophenoloxidase, Suspension, Systems


Andrade, F., Neves, J. D., Gener, P., Schwartz, S., Ferreira, D., Oliva, M., Sarmento, B., (2015). Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin Nanomedicine: Nanotechnology, Biology, and Medicine 11, (7), 1621-1631

Pulmonary delivery of drugs for both local and systemic action has gained new attention over the last decades. In this work, different amphiphilic polymers (Soluplus®, Pluronic® F68, Pluronic® F108 and Pluronic® F127) were used to produce lyophilized formulations for inhalation of insulin. Development of stimuli-responsive, namely glucose-sensitive, formulations was also attempted with the addition of phenylboronic acid (PBA). Despite influencing the in vitro release of insulin from micelles, PBA did not confer glucose-sensitive properties to formulations. Lyophilized powders with aerodynamic diameter (<. 6. μm) compatible with good deposition in the lungs did not present significant in vitro toxicity for respiratory cell lines. Additionally, some formulations, in particular Pluronic® F127-based formulations, enhanced the permeation of insulin through pulmonary epithelial models and underwent minimal internalization by macrophages in vitro. Overall, formulations based on polymeric micelles presenting promising characteristics were developed for the delivery of insulin by inhalation. From the Clinical Editor: The ability to deliver other systemic drugs via inhalation has received renewed interests in the clinical setting. This is especially true for drugs which usually require injections for delivery, like insulin. In this article, the authors investigated their previously developed amphiphilic polymers for inhalation of insulin in an in vitro model. The results should provide basis for future in vivo studies.

JTD Keywords: Cytotoxicity, Inhalation, Permeability, Phagocytosis, Polymeric micelles, Protein delivery