by Keyword: Photosynthetic reaction-center

Eills, J, Budker, D, Cavagnero, S, Chekmenev, EY, Elliott, SJ, Jannin, S, Lesage, A, Matysik, J, Meersmann, T, Prisner, T, Reimer, JA, Yang, HM, Koptyug, IV, (2023). Spin Hyperpolarization in Modern Magnetic Resonance Chemical Reviews 123, 1417-1551

Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.

JTD Keywords: electron-paramagnetic-resonance, high-resolution nmr, hydrogen-induced polarization, level anti-crossings, long-lived states, parahydrogen-induced polarization, photosynthetic reaction-center, reversible exchange catalysis, solid-state nmr, Dynamic-nuclear-polarization

Zamora, RA, López-Ortiz, M, Sales-Mateo, M, Hu, C, Croce, R, Maniyara, RA, Pruneri, V, Giannotti, MI, Gorostiza, P, (2022). Light- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer Acs Nano 16, 15155-15164

Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.

JTD Keywords: architecture, binding-site, complexes, ferredoxin, force spectroscopy, induced structural-changes, interprotein electron transfer, light-dependent interaction, mg2+ concentration, photosystem i, plastocyanin, probe, recognition, reduction, Force spectroscopy, Interprotein electron transfer, Light-dependent interaction, Photosynthetic reaction-center, Photosystem i, Plastocyanin, Single molecule measurements