DONATE

Publications

by Keyword: architecture

Kechagia, Z, Roca-Cusachs, P, (2023). Cytoskeletal safeguards: Protecting the nucleus from mechanical perturbations Curr Opin Biomed Eng 28, 100494

The cell nucleus plays a key role in cellular mechanoresponses. 3D genome organisation, gene expression, and cell behaviour, in general, are affected by mechanical force application to the nucleus, which is transmitted from the cellular environment via a network of interconnected cytoskeletal components. To effectively regulate cell responses, these cytoskeletal components must not only exert forces but also withstand external forces when necessary. This review delves into the latest research concerning how the cytoskeleton safeguards the nucleus from mechanical perturbations. Spe-cifically, we focus on the three primary cytoskeletal polymers: actin, intermediate filaments, and microtubules, as well as their interactions with the cell nucleus. We discuss how the cyto-skeleton acts as a protective shield for the nucleus, ensuring structural integrity and conveying context-specific mechanoresponses.

JTD Keywords: Actin, Architecture, Cytoskeleton, Envelope, F-actin, Filaments, Force, Genome, Intermediate filaments, Lamin, Mechanotransduction, Membrane protein, Microtubules, Nesprin-1, Nucleus


Macedo, MH, Torras, N, García-Díaz, M, Barrias, C, Sarmento, B, Martínez, E, (2023). The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model Biomaterials Advances 153, 213564

The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: 3d architecture, alkaline-phosphatase, caco-2 cells, culture, drug development, efflux proteins, gene-expression, human-colon, intestinal absorption, intestinal models, microenvironment, paracellular transport, permeability, photopolymerization, villi, 3d architecture, 3d bioprinting, Drug development, In-vitro, Intestinal absorption, Intestinal models, Photopolymerization, Villi


Altay, Gizem, Abad-Lazaro, Aina, Gualda, Emilio J, Folch, Jordi, Insa, Claudia, Tosi, Sebastien, Hernando-Momblona, Xavier, Batlle, Eduard, Loza-Alvarez, Pablo, Fernandez-Majada, Vanesa, Martinez, Elena, (2022). Modeling Biochemical Gradients In Vitro to Control Cell Compartmentalization in a Microengineered 3D Model of the Intestinal Epithelium Advanced Healthcare Materials 11, 2201172

Gradients of signaling pathways within the intestinal stem cell (ISC) niche are instrumental for cellular compartmentalization and tissue function, yet how are they sensed by the epithelium is still not fully understood. Here a new in vitro model of the small intestine based on primary epithelial cells (i), apically accessible (ii), with native tissue mechanical properties and controlled mesh size (iii), 3D villus-like architecture (iv), and precisely controlled biomolecular gradients of the ISC niche (v) is presented. Biochemical gradients are formed through hydrogel-based scaffolds by free diffusion from a source to a sink chamber. To confirm the establishment of spatiotemporally controlled gradients, light-sheet fluorescence microscopy and in-silico modeling are employed. The ISC niche biochemical gradients coming from the stroma and applied along the villus axis lead to the in vivo-like compartmentalization of the proliferative and differentiated cells, while changing the composition and concentration of the biochemical factors affects the cellular organization along the villus axis. This novel 3D in vitro intestinal model derived from organoids recapitulates both the villus-like architecture and the gradients of ISC biochemical factors, thus opening the possibility to study in vitro the nature of such gradients and the resulting cellular response.© 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.

JTD Keywords: 3d architectures, biomolecular gradients, colon, crypt, engineering organoids, hydrogels, identification, in silico modeling, intestinal stem cell niches, light sheet fluorescence microscopy, niche, permeability, photolithography, regeneration, villus, wnt, 3d architectures, Biomolecular gradients, Engineering organoids, In silico modeling, Intestinal stem cell niches, Light sheet fluorescence microscopy, Photolithography, Stem-cell


Zamora, RA, López-Ortiz, M, Sales-Mateo, M, Hu, C, Croce, R, Maniyara, RA, Pruneri, V, Giannotti, MI, Gorostiza, P, (2022). Light- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer Acs Nano 16, 15155-15164

Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.

JTD Keywords: architecture, binding-site, complexes, ferredoxin, force spectroscopy, induced structural-changes, interprotein electron transfer, light-dependent interaction, mg2+ concentration, photosystem i, plastocyanin, probe, recognition, reduction, Force spectroscopy, Interprotein electron transfer, Light-dependent interaction, Photosynthetic reaction-center, Photosystem i, Plastocyanin, Single molecule measurements


Castagna, R, Kolarski, D, Durand-de Cuttoli, R, Maleeva, G, (2022). Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology Journal Of Molecular Neuroscience 72, 1433-1442

Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.

JTD Keywords: brain circuits, circadian rhythm, in vivo photomodulation, in vivo technology, neuronal receptors, Architecture, Azobenzene photoswitches, Brain circuits, Channels, Circadian rhythm, In vivo photomodulation, In vivo technology, Light, Modulator, Neuronal receptors, Optical control, Optogenetics, Pharmacology, Photopharmacology, Receptors, Systems


Raymond, Y, Lehmann, C, Thorel, E, Benitez, R, Riveiro, A, Pou, J, Manzanares, MC, Franch, J, Canal, C, Ginebra, MP, (2022). 3D printing with star-shaped strands: A new approach to enhance in vivo bone regeneration Biomaterials Advances 137, 212807

Concave surfaces have shown to promote bone regeneration in vivo. However, bone scaffolds obtained by direct ink writing, one of the most promising approaches for the fabrication of personalized bone grafts, consist mostly of convex surfaces, since they are obtained by microextrusion of cylindrical strands. By modifying the geometry of the nozzle, it is possible to print 3D structures composed of non-cylindrical strands and favor the presence of concave surfaces. In this work, we compare the in vivo performance of 3D-printed calcium phosphate scaffolds with either conventional cylindrical strands or star-shaped strands, in a rabbit femoral condyle model. Mono cortical defects, drilled in contralateral positions, are randomly grafted with the two scaffold configurations, with identical composition. The samples are explanted eight weeks post-surgery and assessed by ??-CT and resin embedded histological observations. The results reveal that the scaffolds containing star-shaped strands have better osteoconductive properties, guiding the newly formed bone faster towards the core of the scaffolds, and enhance bone regeneration, although the increase is not statistically significant (p > 0.05). This new approach represents a turning point towards the optimization of pore shape in 3D-printed bone grafts, further boosting the possibilities that direct ink writing technology offers for patient-specific applications.

JTD Keywords: 3d printing, biomimetic calcium phosphate, bone regeneration, in vivo, pore architecture, 3d printing, Architecture, Biomimetic calcium phosphate, Bone regeneration, Calcium-phosphate scaffolds, Geometry, Growth, Implants, In vivo, Induction, Microporosity, Osteoinduction, Pore architecture, Scaffold, Surfaces, Tissue


Andreu, I, Granero-Moya, I, Garcia-Manyes, S, Roca-Cusachs, P, (2022). Understanding the role of mechanics in nucleocytoplasmic transport Apl Bioengineering 6, 20901

Cell nuclei are submitted to mechanical forces, which in turn affect nuclear and cell functions. Recent evidence shows that a crucial mechanically regulated nuclear function is nucleocytoplasmic transport, mediated by nuclear pore complexes (NPCs). Mechanical regulation occurs at two levels: first, by force application to the nucleus, which increases NPC permeability likely through NPC stretch. Second, by the mechanical properties of the transported proteins themselves, as mechanically labile proteins translocate through NPCs faster than mechanically stiff ones. In this perspective, we discuss this evidence and the associated mechanisms by which mechanics can regulate the nucleo-cytoplasmic partitioning of proteins. Finally, we analyze how mechanical regulation of nucleocytoplasmic transport can provide a systematic approach to the study of mechanobiology and open new avenues both in fundamental and applied research. (C) 2022 Author(s).

JTD Keywords: Architecture, Association, Force, Nuclear-pore complex, Pathways, Protein import, Sun1


Torabi, N, Qiu, XK, López-Ortiz, M, Loznik, M, Herrmann, A, Kermanpur, A, Ashrafi, A, Chiechi, RC, (2021). Fullerenes Enhance Self-Assembly and Electron Injection of Photosystem i in Biophotovoltaic Devices Langmuir 37, 11465-11473

This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.

JTD Keywords: architecture, arrays, construction, metal, nanotubes, performance, photosynthetic proteins, polymer-fullerene, solar-cells, Photocurrent generation


Velasco-Mallorqui, F, Rodriguez-Comas, J, Ramon-Azcon, J, (2021). Cellulose-based scaffolds enhance pseudoislets formation and functionality Biofabrication 13, 35044

In vitro research for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1E beta-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generate beta-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producing beta-cells, representing a suitable technique to generate beta-cell clusters to study pancreatic islet function.

JTD Keywords: biomaterial, cryogel, pancreatic islets, scaffold, tissue engineering, ?-cell, Architecture, Beta-cell, Beta-cell heterogeneity, Biomaterial, Carboxymethyl cellulose, Cell culture, Cell death, Cell engineering, Cell organization, Cells, Cellulose, Cryogel, Cryogels, Cytoarchitecture, Delivery, Encapsulation methods, Gelation, Gene-expression, Immortalized cells, Insulin, Insulin secretory responses, Islets of langerhans, Mechanical and physical properties, Monolayer culture, Monolayers, Pancreatic islets, Pancreatic tissue, Pancreatic-islets, Proliferation, Scaffold, Scaffolds, Scaffolds (biology), Size, Tissue, Tissue engineering, Β-cell


Ortega, MA, Rodríguez-Comas, J, Velasco-Mallorquí, F, Balaguer-Trias, J, Parra, V, Ramón-Azcón, J, Yavas, O, Quidant, R, Novials, A, Servitja, JM, (2021). In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip Biosensors 11, 138

Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.

JTD Keywords: biosensor, cytoarchitecture, dna hybridization, gelatin, in situ insulin monitoring, langerhans, lspr sensors, microfluidic device, organ-on-a-chip, parallel, platform, scaffold, Animals, Biosensing techniques, Diabetes mellitus, type 2, Drug discovery, Drug evaluation, preclinical, Human pancreatic-islets, Humans, In situ insulin monitoring, Insulin secretion, Insulins, Lab-on-a-chip devices, Lspr sensors, Oligonucleotide array sequence analysis, Organ-on-a-chip, Surface plasmon resonance


Freire IT, Amil AF, Vouloutsi V, Verschure PFMJ, (2021). Towards sample-efficient policy learning with DAC-ML Procedia Computer Science 190, 256-262

The sample-inefficiency problem in Artificial Intelligence refers to the inability of current Deep Reinforcement Learning models to optimize action policies within a small number of episodes. Recent studies have tried to overcome this limitation by adding memory systems and architectural biases to improve learning speed, such as in Episodic Reinforcement Learning. However, despite achieving incremental improvements, their performance is still not comparable to how humans learn behavioral policies. In this paper, we capitalize on the design principles of the Distributed Adaptive Control (DAC) theory of mind and brain to build a novel cognitive architecture (DAC-ML) that, by incorporating a hippocampus-inspired sequential memory system, can rapidly converge to effective action policies that maximize reward acquisition in a challenging foraging task.

JTD Keywords: Cognitive architecture, Distributed adaptive control, Reinforcement learning, Sample-inefficiency problem, Sequence learning


Guerrero, O., Verschure, P., (2020). Distributed adaptive control: An ideal cognitive architecture candidate for managing a robotic recycling plant Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020 (Lecture Notes in Computer Science) , Springer International Publishing (Freiburg, Germany) 12413, 153-164

In the past decade, society has experienced notable growth in a variety of technological areas. However, the Fourth Industrial Revolution has not been embraced yet. Industry 4.0 imposes several challenges which include the necessity of new architectural models to tackle the uncertainty that open environments represent to cyber-physical systems (CPS). Waste Electrical and Electronic Equipment (WEEE) recycling plants stand for one of such open environments. Here, CPSs must work harmoniously in a changing environment, interacting with similar and not so similar CPSs, and adaptively collaborating with human workers. In this paper, we support the Distributed Adaptive Control (DAC) theory as a suitable Cognitive Architecture for managing a recycling plant. Specifically, a recursive implementation of DAC (between both single-agent and large-scale levels) is proposed to meet the expected demands of the European Project HR-Recycler. Additionally, with the aim of having a realistic benchmark for future implementations of the recursive DAC, a micro-recycling plant prototype is presented.

JTD Keywords: Cognitive architecture, Distributed Adaptive Control, Recycling plant, Navigation, Motor control, Human-Robot Interaction


Freire, Ismael T., Urikh, D., Arsiwalla, X. D., Verschure, P., (2020). Machine morality: From harm-avoidance to human-robot cooperation Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020 (Lecture Notes in Computer Science) , Springer International Publishing (Freiburg, Germany) 12413, 116-127

We present a new computational framework for modeling moral decision-making in artificial agents based on the notion of ‘Machine Morality as Cooperation’. This framework integrates recent advances from cross-disciplinary moral decision-making literature into a single architecture. We build upon previous work outlining cognitive elements that an artificial agent would need for exhibiting latent morality, and we extend it by providing a computational realization of the cognitive architecture of such an agent. Our work has implications for cognitive and social robotics. Recent studies in human neuroimaging have pointed to three different decision-making processes, Pavlovian, model-free and model-based, that are defined by distinct neural substrates in the brain. Here, we describe how computational models of these three cognitive processes can be implemented in a single cognitive architecture by using the distributed and hierarchical organization proposed by the DAC theoretical framework. Moreover, we propose that a pro-social drive to cooperate exists at the Pavlovian level that can also bias the rest of the decision system, thus extending current state-of-the-art descriptive models based on harm-aversion.

JTD Keywords: Morality, Moral decision-making, Computational models, Cognitive architectures, Cognitive robotics, Human-robot interaction


Amil, A. F., Maffei, G., Puigbò, J. Y., Arsiwalla, X. D., Verschure, P., (2019). Robust postural stabilization with a biomimetic hierarchical control architecture Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019 (Lecture Notes in Computer Science) , Springer, Cham (Nara, Japan) 11556, 321-324

Fast online corrections during anticipatory movements are a signature of robustness in biological motor control. In this regard, a previous study suggested that anticipatory postural control can be recast as a sensory-sensory predictive process, where hierarchically connected cerebellar microcircuits reflect the causal sequence of events preceding a postural disturbance. Hence, error monitoring signals from higher sensory layers inform lower layers about violations of expectations, affording fast corrections when the normal sequence is broken. Here we generalize this insight and prove that the proposed hierarchical control architecture can deal with different types of alterations in the causal structure of the environment, therefore extending the limits of performance.

JTD Keywords: Anticipatory control, Cerebellum, Control architecture, Robustness


Martinez-Hernandez, Uriel, Vouloutsi, Vasiliki, Mura, Anna, Mangan, Michael, Asada, Minoru, Prescott, T. J., Verschure, P., (2019). Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019, Nara, Japan, July 9–12, 2019, Proceedings , Springer, Cham (Lausanne, Switzerland) 11556, 1-384

This book constitutes the proceedings of the 8th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2019, held in Nara, Japan, in July 2019. The 26 full and 16 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

JTD Keywords: Artificial intelligence, Biomimetics, Computer architecture, Human robot interaction, Human-Computer Interaction (HCI), Humanoid robot, Image processing, Learning algorithms, Mobile robots, Multipurpose robots, Neural networks, Quadruped robots, Reinforcement learning, Robot learning, Robotics, Robots, Sensor, Sensors, Swarm robotics, User interfaces


Fischer, Tobias, Puigbò, Jordi-Ysard, Camilleri, Daniel, Nguyen, Phuong D. H., Moulin-Frier, Clément, Lallée, Stéphane, Metta, Giorgio, Prescott, Tony J., Demiris, Yiannis, Verschure, P., (2018). iCub-HRI: A software framework for complex human-robot interaction scenarios on the iCub humanoid robot Frontiers in Robotics and AI , 5, (22), Article 22

Generating complex, human-like behaviour in a humanoid robot like the iCub requires the integration of a wide range of open source components and a scalable cognitive architecture. Hence, we present the iCub-HRI library which provides convenience wrappers for components related to perception (object recognition, agent tracking, speech recognition, touch detection), object manipulation (basic and complex motor actions) and social interaction (speech synthesis, joint attention) exposed as a C++ library with bindings for Java (allowing to use iCub-HRI within Matlab) and Python. In addition to previously integrated components, the library allows for simple extension to new components and rapid prototyping by adapting to changes in interfaces between components. We also provide a set of modules which make use of the library, such as a high-level knowledge acquisition module and an action recognition module. The proposed architecture has been successfully employed for a complex human-robot interaction scenario involving the acquisition of language capabilities, execution of goal-oriented behaviour and expression of a verbal narrative of the robot's experience in the world. Accompanying this paper is a tutorial which allows a subset of this interaction to be reproduced. The architecture is aimed at researchers familiarising themselves with the iCub ecosystem, as well as expert users, and we expect the library to be widely used in the iCub community.

JTD Keywords: Robotics, iCub Humanoid, YARP, Software architecture, C++, Python, Java, Human-robot interaction


Barba, Albert, Maazouz, Yassine, Diez-Escudero, Anna, Rappe, Katrin, Espanol, Montserrat, Montufar, Edgar B., Öhman-Mägi, Caroline, Persson, Cecilia, Fontecha, Pedro, Manzanares, Maria-Cristina, Franch, Jordi, Ginebra, Maria-Pau, (2018). Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture Acta Biomaterialia 79, 135-147

There is an urgent need of synthetic bone grafts with enhanced osteogenic capacity. This can be achieved by combining biomaterials with exogenous growth factors, which however can have numerous undesired side effects, but also by tuning the intrinsic biomaterial properties. In a previous study, we showed the synergistic effect of nanostructure and pore architecture of biomimetic calcium deficient hydroxyapatite (CDHA) scaffolds in enhancing osteoinduction, i.e. fostering the differentiation of mesenchymal stem cells to bone forming cells. This was demonstrated by assessing bone formation after implanting the scaffolds intramuscularly. The present study goes one step forward, since it analyzes the effect of the geometrical features of the same CDHA scaffolds, obtained either by 3D-printing or by foaming, on the osteogenic potential and resorption behaviour in a bony environment. After 6 and 12 weeks of intraosseous implantation, both bone formation and material degradation had been drastically affected by the macropore architecture of the scaffolds. Whereas nanostructured CDHA was shown to be highly osteoconductive both in the robocast and foamed scaffolds, a superior osteogenic capacity was observed in the foamed scaffolds, which was associated with their higher intrinsic osteoinductive potential. Moreover, they showed a significantly higher cell-mediated degradation than the robocast constructs, with a simultaneous and progressive replacement of the scaffold by new bone. In conclusion, these results demonstrate that the control of macropore architecture is a crucial parameter in the design of synthetic bone grafts, which allows fostering both material degradation and new bone formation. Statement of Significance: 3D-printing technologies open new perspectives for the design of patient-specific bone grafts, since they allow customizing the external shape together with the internal architecture of implants. In this respect, it is important to design the appropriate pore geometry to maximize the bone healing capacity of these implants. The present study analyses the effect of pore architecture of nanostructured hydroxyapatite scaffolds, obtained either by 3D-printing or foaming, on the osteogenic potential and scaffold resorption in an in vivo model. While nanostructured hydroxyapatite showed excellent osteoconductive properties irrespective of pore geometry, we demonstrated that the spherical, concave macropores of foamed scaffolds significantly promoted both material resorption and bone regeneration compared to the 3D-printed scaffolds with orthogonal-patterned struts and therefore prismatic, convex macropores.

JTD Keywords: Osteogenesis, Pore architecture, 3D-printing, Foaming, Calcium phosphate


Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J., Pattacini, U., Low, S. C., Camilleri, D., Nguyen, P., Hoffmann, M., Chang, H. J., Zambelli, M., Mealier, A., Damianou, A., Metta, G., Prescott, T. J., Demiris, Y., Dominey, P. F., Verschure, P. F. M. J., (2018). DAC-h3: A proactive robot cognitive architecture to acquire and express knowledge about the world and the self IEEE Transactions on Cognitive and Developmental Systems 10, (4), 1005-1022

This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users.

JTD Keywords: Autobiographical Memory., Biology, Cognition, Cognitive Robotics, Computer architecture, Distributed Adaptive Control, Grounding, Human-Robot Interaction, Humanoid robots, Robot sensing systems, Symbol Grounding


Moulin-Frier, C., Puigbò, J. Y., Arsiwalla, X. D., Sanchez-Fibla, M., Verschure, P., (2018). Embodied artificial intelligence through distributed adaptive control: An integrated framework ICDL-EpiRob 2017 7th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics , IEEE (Lisbon, Portugal) , 324-330

In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances in the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building on this analysis, we first propose an embodied cognitive architecture integrating heterogeneous subfields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.

JTD Keywords: Cognitive Architectures, Embodied Artificial Intelligence, Evolutionary Arms Race, Unified Theories of Cognition


Verschure, P., (2018). The architecture of mind and brain Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 338-345

The components of a Living Machine must be integrated into a functioning whole, which requires a detailed understanding of the architecture of living machines. This chapter starts with a conceptual and historical analysis which from Plato brings us to nineteenth-century neuroscience and early concepts of the layered structure of nervous systems. These concepts were further captured in the cognitive behaviorism of Tolman and came to full fruition in the cognitive revolution of the second half of the twentieth century. Verschure subsequently describes the most relevant proposals of cognitive architectures followed by an overview of the few proposals stemming from modern neuroscience on the architecture of the brain. Subsequently, we will look at contemporary contenders that mediate between cognitive and brain architecture. An important challenge to any model of cognitive architectures is how to benchmark it. Verschure proposes the Unified Theories of Embodied Minds (UTEM) benchmark which advances from Newell’s classic Unified Theories of Cognition benchmark.

JTD Keywords: Architecture, Mind, Brain, Organization, System, Virtualization, Abstraction layers


Verschure, P., (2018). A chronology of Distributed Adaptive Control Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 346-360

This chapter presents the Distributed Adaptive Control (DAC) theory of the mind and brain of living machines. DAC provides an explanatory framework for biological brains and an integration framework for synthetic ones. DAC builds on several themes presented in the handbook: it integrates different perspectives on mind and brain, exemplifies the synthetic method in understanding living machines, answers well-defined constraints faced by living machines, and provides a route for the convergent validation of anatomy, physiology, and behavior in our explanation of biological living machines. DAC addresses the fundamental question of how a living machine can obtain, retain, and express valid knowledge of its world. We look at the core components of DAC, specific benchmarks derived from the engagement with the physical and the social world (the H4W and the H5W problems) in foraging and human–robot interaction tasks. Lastly we address how DAC targets the UTEM benchmark and the relation with contemporary developments in AI.

JTD Keywords: Distributed Adaptive Control, Problem of priors, Symbol grounding problem, Convergent validation, Foraging, brain, Architecture, system


Verschure, P., (2018). Capabilities Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 211-217

This chapter introduces the “Capabilities” section of the Handbook of Living Machines. Where the previous section considered building blocks, we recognize that components or modules do not automatically make systems. Hence, in the remainder of this handbook, the emphasis is toward the capabilities of living systems and their emulation in artifacts. Capabilities often arise from the integration of multiple components and thus sensitize us to the need to develop a system-level perspective on living machines. Here we summarize and consider the 14 contributions in this section which cover perception, action, cognition, communication, and emotion, and the integration of these through cognitive architectures into systems that can emulate the full gamut of integrated behaviors seen in animals including, potentially, our own capacity for consciousness.

JTD Keywords: Action, Cognition, Cognitive architecture, Communication, Consciousness, Emotion, Perception


Freire, I. T., Arsiwalla, X. D., Puigbò, J. Y., Verschure, P., (2018). Limits of multi-agent predictive models in the formation of social conventions Frontiers in Artificial Intelligence and Applications (ed. Falomir, Z., Gibert, K., Plaza, E.), IOS Press (Amsterdam, The Netherlands) Volume 308: Artificial Intelligence Research and Development, 297-301

A major challenge in cognitive science and AI is to understand how intelligent agents might be able to predict mental states of other agents during complex social interactions. What are the computational principles of such a Theory of Mind (ToM)? In previous work, we have investigated hypotheses of how the human brain might realize a ToM of other agents in a multi-agent social scenario. In particular, we have proposed control-based cognitive architectures to predict the model of other agents in a game-theoretic task (Battle of the Exes). Our multi-layer architecture implements top-down predictions from adaptive to reactive layers of control and bottom-up error feedback from reactive to adaptive layers. We tested cooperative and competitive strategies among different multi-agent models, demonstrating that while pure RL leads to reasonable efficiency and fairness in social interactions, there are other architectures that can perform better in specific circumstances. However, we found that even the best predictive models fall short of human data in terms of stability of social convention formation. In order to explain this gap between humans and predictive AI agents, in this work we propose introducing the notion of trust in the form of mutual agreements between agents that might enhance stability in the formation of conventions such as turn-taking.

JTD Keywords: Cognitive Architectures, Game Theory, Multi-Agent Models, Reinforcement Learning, Theory of Mind


Aviles, A. I., Alsaleh, S. M., Sobrevilla, P., Casals, A., (2015). Force-feedback sensory substitution using supervised recurrent learning for robotic-assisted surgery Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 1-4

The lack of force feedback is considered one of the major limitations in Robot Assisted Minimally Invasive Surgeries. Since add-on sensors are not a practical solution for clinical environments, in this paper we present a force estimation approach that starts with the reconstruction of a 3D deformation structure of the tissue surface by minimizing an energy functional. A Recurrent Neural Network-Long Short Term Memory (RNN-LSTM) based architecture is then presented to accurately estimate the applied forces. According to the results, our solution offers long-term stability and shows a significant percentage of accuracy improvement, ranging from about 54% to 78%, over existing approaches.

JTD Keywords: Computer architecture, Estimation, Force, Microprocessors, Robot sensing systems, Surgery


Serra, T., Navarro, M., Planell, J. A., (2012). Fabrication and characterization of biodegradable composite scaffolds for tissue engineering Innovative Developments in Virtual and Physical Prototyping 5th International Conference on Advanced Research and Rapid Prototyping (ed. Margarida, T., Ferreira, D.), Taylor & Francis (Leiria, Portugal) VR@P, 67-72

In this study, polylactic acid (PLA) and polyethylene glycol (PEG) were combined with soluble CaP glass particles and processed by rapid prototyping to obtain fully biodegradable structures for Tissue Engineering applications. The obtained 3D biodegradable structures were characterized in terms of their architecture and mechanical properties. The scaffold morphology, internal micro-architecture and mechanical properties were evaluated using Scanning Electron Microscopy (SEM), micro-computed tomography (micro-CT) and mechanical testing, respectively. Well defined structures with pore size of 350-400μm (in the axial view), struts width of approximately 70-80μm, and a porosity ranging between 60-65% were obtained. The combination RP and PLA/PEG/CaP glass turned into promising fully degradable, mechanically stable, bioactive and biocompatible composite scaffolds for TE.

JTD Keywords: Axial view, Biodegradable composites, Composite scaffolds, Glass particles, Mechanically stable, Micro architectures, Micro computed tomography (micro-CT), Poly lactic acid, Scaffold morphology, Tissue engineering applications, Well-defined structures, Bioactive glass, Mechanical properties, Mechanical testing, Polyethylene glycols, Polymer blends, Rapid prototyping, Scaffolds (biology), Scanning electron microscopy, Computerized tomography


Amigo, L. E., Fernandez, Q., Giralt, X., Casals, A., Amat, J., (2012). Study of patient-orthosis interaction forces in rehabilitation therapies IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 1098-1103

The design of mechanical joints that kinematically behave as their biological counterparts is a challenge that if not addressed properly can cause inadequate forces transmission between robot and patient. This paper studies the interaction forces in rehabilitation therapies of the elbow joint. To measure the effect of orthosis-patient misalignments, a force sensor with a novel distributed architecture has been designed and used for this study. A test-bed based on an industrial robot acting as a virtual exoskeleton that emulates the action of a therapist has been developed and the interaction forces analyzed.

JTD Keywords: Force, Force measurement, Force sensors, Joints, Medical treatment, Robot sensing systems, Force sensors, Medical robotics, Patient rehabilitation, Biological counterparts, Distributed architecture, Elbow joint, Force sensor, Inadequate forces transmission, Industrial robot, Mechanical joints design, Orthosis-patient misalignments, Patient-orthosis interaction forces, Rehabilitation therapies, Robot, Test-bed, Virtual exoskeleton


Hernansanz, A., Amat, J., Casals, A., (2012). Virtual Robot: A new teleoperation paradigm for minimally invasive robotic surgery IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 749-754

This paper presents a novel teleoperation paradigm, the Virtual Robot (VR), focused on facilitating the surgeon tasks in minimally invasive robotic surgery. The VR has been conceived to increase the range of applicability of traditional master slave teleoperation architectures by means of an automatic cooperative behavior that assigns the execution of the ongoing task to the most suitable robot. From the user's point of view, the VR internal operation must be automatic and transparent. A set of evaluation indexes have been developed to obtain the suitability of each robot as well as an algorithm to determine the optimal instant of time to execute a task transfer. Several experiments demonstrate the usefulness of the VR, as well as indicates the next steps of the research.

JTD Keywords: Cameras, Collision avoidance, Indexes, Joints, Robots, Surgery, Trajectory, Medical robotics, Surgery, Telerobotics, VR internal operation, Automatic cooperative behavior, Evaluation indexes, Master slave teleoperation architectures, Minimally invasive robotic surgery, Task transfer, Virtual robot


Colomer-Farrarons, Jordi , Miribel-Català, Pedro Luís, Samitier, Josep , (2011). Low-voltage µpower CMOS subcutaneous biomedical implantable device for true/false applications Biomedical Engineering IASTED International Conference Biomedical Engineering (Biomed 2011) (ed. Baumgartner, C.), ACTA Press (Innsbruck, Austria) Biomedical Engineering, 424-428

A ±1.2V / 350μW integrated front-end architecture for a true/false in-vivo subcutaneous detection device is presented. The detection is focused on using three electrodes amperometric sensors. The powering and AM transcutaneous communication are based on an inductively coupled link working at 13.56 MHz. A prototype device (5.5 mm x 29.5 mm) has been implemented and fully validated.

JTD Keywords: Implantable Device, Front-End architecture, Bioelectronics, Microelectronics Design, Biosensors