DONATE

Publications

by Keyword: Poly(acrylic acid)

Molina, BG, Vasani, RB, Jarvis, KL, Armelin, E, Voelcker, NH, Aleman, C, (2022). Dual pH- and electro-responsive antibiotic-loaded polymeric platforms for effective bacterial detection and elimination Reactive & Functional Polymers 181, 105434

We describe a multi-tasking flexible system that is able to release a wide spectrum antibiotic (levofloxacin, LVX) under electrostimulation and act as a pH sensor for detecting bacterial infections. Combining anodic polymer-ization with plasma polymerization processes we engineered dual pH-and electro-responsive polymeric systems. Particularly, the manufactured devices consisted on a layer of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHEDOT) loaded with the LVX antibiotic and coated with a plasma polymer layer of poly(acrylic acid) (PAA). The PHEDOT acted as conductive and electro-responsive agent, while the PAA provided pH responsiveness, changing from a compact globular conformation in acid environments to an expanded open coil conformation in alkaline environments. The assembly between the PHEDOT layer and the PAA coating affected the electro-chemical response of the former, becoming dependent on the pH detected by the latter. The conformational change experienced by the PAA layer as a function of the pH and the redox properties of PHEDOT were leveraged for the electrochemical detection of bacteria growth and for regulating the release of the LVX antibiotic, respectively. The effectiveness of the system as a stimulus-responsive antibiotic carrier and pH sensor was also investigated on strains of Escherichia coli and Streptococcus salivarius.

JTD Keywords: Conducting polymer, Delivery, Drug delivery, Electrostimulation, Levofloxacin, Ph sensor, Plasma, Poly(acrylic acid), Selective detection


Ruiz, A., Mills, C. A., Valsesia, A., Martinez, E., Ceccone, G., Samitier, J., Colpo, P., Rossi, F., (2009). Large-area, nanoimprint-assisted microcontact stripping for the fabrication of microarrays of fouling/nonfouling nanostructures Small 5, (10), 1133-1137

Methods for the accurate positioning of nanometric beads on a substrate have been developed over a number of years, and range from serial atomic force microscopy (AFM)techniques for single-bead positioning to parallel techniques for the positioning of large populations of beads in monolayer or multilayer architectures, typically from a liquid suspension. For example, topographic cues have been used for bead-based protein array production, although in this case, there is a random distribution of beads within the topography. Bead patterning has also been achieved in capillaries using a micromolding in capillaries (MIMIC) technique. Line patterns with micrometer widths are possible with this technique, achieving good multilayer organization. For monolayer bead patterning at micrometer dimensions, electrostatic forces and similar electrostatic assemblies using nanoxerography, as well as patterning by selective chemical functionalization, by transfer of particles from a liquid–liquid interface, and by subtracting top–down processes, are possible.

JTD Keywords: Microcontact stripping, Nanostructures, Poly(acrylic acid), Polystyrene, Surface patterning