DONATE

Publications

by Keyword: Conducting polymer

Fontana-Escartin, Adrian, Lanzalaco, Sonia, Armelin, Elaine, Turon, Pau, Ardevol, Jordi, Aleman, Carlos, (2024). Smart polyurethane endosponges for endoluminal vacuum therapy: Integration of a bacteria sensor Colloids And Surfaces A-Physicochemical And Engineering Aspects 692, 133947

The development of smart biomedical devices as efficient tools in early diagnosis and therapy monitoring has recently witnessed unprecedented growth, becoming an emerging field in biomedical engineering. Sponges for endoluminal vacuum therapy, which are intended for transmitting negative pressure as trigger for tissue regeneration and for draining infections in anastomotic leakages, are massively used implants with very complex geometry and high risk of infection. In this work, commercial polyurethane (PU) sponges have been converted into smart biomedical devices by incorporating an electrochemical sensor to monitor the growth of bacteria. Such innovative approach, which allows to track the tissue healing process avoiding further infection development, has been performed applying a three-step process: 1) activation of PU using low pressure oxygen plasma; 2) incorporation of conducting polymer (CP) nanoparticles (NPs) at the surface of the activated PU by chemical oxidative polymerization; and 3) formation of a homogeneous electroactive coating using the CP NPs obtained in 2), as growth nuclei in an electrochemical polymerization. The functionalized PU sponge is able to monitor the bacteria growth in the surrounding media by detecting the concentration of nicotinamide adenine dinucleotide (NADH) from respiration reactions in the cytosol (i.e. bacteria do not have mitochondria). Conversely, respiration in normal eukaryotic cells takes place in the mitochondria, whose double membrane is not permeable to NADH. The sensing performance of the CP-coated PU sponges (limit of detection: 0.06 mM; sensitivity: 1.21 mA/cm2) has been determined in the lab using NADH solutions, while a proof of concept have been conducted using Escherichia coli bacteria cultures.

JTD Keywords: Conducting polymer, Desig, Electrochemical coating, Esophageal cancer, Nadh, Pedot, Polyurethane functionalization, Selective detection, Sponge functionalizatio


Molina, BG, Arnau, M, Sánchez, M, Alemán, C, (2024). Controlled dopamine release from cellulose-based conducting hydrogel European Polymer Journal 202, 112635

Very recently, the controlled release of dopamine (DA), a neurotransmitter whose deficiency is associated with Parkinson's disease, has been postulated as a good alternative to the oral administration of levodopa (L-Dopa), a dopamine precursor, to combat the effects of said disease. However, this is still a very little explored field and there are very few carriers that are capable of releasing DA, a small and water-soluble molecule, in an efficient and controlled manner. In this work, we report a carrier based on a conductive hydrogel capable of loading DA and releasing it progressively and efficiently (100 % release) in a period of five days by applying small electrical stimuli (-0.4 V) daily for a short time (1 min). The hydrogel (CMC/PEDOT), which is electrically active, has been prepared from sodium carboxymethylcellulose and poly(3,4-ethylenedioxythiophene) microparticles, using citric acid as a cross-linking agent. Furthermore, the results have shown that when relatively hydrophobic small molecules, such as chloramphenicol, are loaded, the electrostimulated release is significantly less efficient, demonstrating the usefulness of CMC/PEDOT as a carrier for neurotransmitters.

JTD Keywords: Amines, Carboxymethyl cellulose, Carboxymethylcellulose, Conducting hydrogels, Conducting polymers, Controlled release, Crosslinking, Dopamine, Drug-delivery system, Electrostimulation, Hydrogels, Joining, Levodopa, Loading, Molecules, Neurophysiology, Neurotransmitter release, Neurotransmitters release, Oral administration, Parkinson's disease, Parkinsons-disease, Poly(3,4-ethylenedioxythiophene), Release, Sodium, Transport, Water-soluble molecule


Fontana-Escartín, A, Lanzalaco, S, Bertran, O, Aradilla, D, Alemán, C, (2023). Aqueous alginate/MXene inks for 3D printable biomedical devices Colloids And Surfaces A-Physicochemical And Engineering Aspects 671, 131632

Electrochemically responsive hydrogel networks have been obtained usin g printable inks made of a biopolymer, alginate (Alg), and an inorganic 2D material , MXene (titaniu m carbide, Ti3C2Tx) nanosheets. While MXene offers an electrically conductive pathway for electron transfer and Alg provides an interconnected framework for ion diffusion, the printed nanocomposite results, after gelation, in an extended active interface for redox reactions, being an ideal framework to design and construct flexible devices for biomedical applications. In this work, after characterization, we demonstrate that hydrogels obtained by cross-linking printed Alg /MXene inks exhibit great potential for bioelectronics. More specifically, we prove that flexible Alg/MXene hydrogels act as self-supported electroactive electrodes for the electrochemical detection of bioanalytes, such as dopamine, with a performance similar to that achieved using more sophisticated electrodes, as for example those containing conducting poly-mers and electrocatalytic gold nanoparticles. In addition, Alg/MXene hydrogels have been successfully used to regulate the release of a previously loaded broad spectrum antibiotic (chloramphenicol) by electrical stimulation.

JTD Keywords: 3d-printing, Biomedical application s, Composites, Conducting polymers, Drug release, Electroresponsive hydrogels, Fabrication, Hydrogels, Platform, Sensors, Strategy, Surface, Thin-film, Titanium carbide


Srinivasan, SY, Cler, M, Zapata-Arteaga, O, Dorling, B, Campoy-Quiles, M, Martinez, E, Engel, E, Perez-Amodio, S, Laromaine, A, (2023). Conductive Bacterial Nanocellulose-Polypyrrole Patches Promote Cardiomyocyte Differentiation Acs Applied Bio Materials 6, 2860-2874

The low endogenous regenerative capacity of the heart,added tothe prevalence of cardiovascular diseases, triggered the advent ofcardiac tissue engineering in the last decades. The myocardial nicheplays a critical role in directing the function and fate of cardiomyocytes;therefore, engineering a biomimetic scaffold holds excellent promise.We produced an electroconductive cardiac patch of bacterial nanocellulose(BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the naturalmyocardial microenvironment. BC offers a 3D interconnected fiber structurewith high flexibility, which is ideal for hosting Ppy nanoparticles.BC-Ppy composites were produced by decorating the network of BC fibers(65 & PLUSMN; 12 nm) with conductive Ppy nanoparticles (83 & PLUSMN; 8 nm).Ppy NPs effectively augment the conductivity, surface roughness, andthickness of BC composites despite reducing scaffolds' transparency.BC-Ppy composites were flexible (up to 10 mM Ppy), maintained theirintricate 3D extracellular matrix-like mesh structure in all Ppy concentrationstested, and displayed electrical conductivities in the range of nativecardiac tissue. Furthermore, these materials exhibit tensile strength,surface roughness, and wettability values appropriate for their finaluse as cardiac patches. In vitro experiments withcardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibilityof BC-Ppy composites. BC-Ppy scaffolds improved cell viability andattachment, promoting a desirable cardiomyoblast morphology. Biochemicalanalyses revealed that H9c2 cells showed different cardiomyocyte phenotypesand distinct levels of maturity depending on the amount of Ppy inthe substrate used. Specifically, the employment of BC-Ppy compositesdrives partial H9c2 differentiation toward a cardiomyocyte-like phenotype.The scaffolds increase the expression of functional cardiac markersin H9c2 cells, indicative of a higher differentiation efficiency,which is not observed with plain BC. Our results highlight the remarkablepotential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerativetherapies.

JTD Keywords: bacterial nanocellulose, cardiac patches, conducting polymers, polypyrrole, Arrhythmias, Bacterial nanocellulose, Biomaterials, Cardiac patches, Cell therapy, Cellulose, Conductingpolymers, H9c2, In-vitro, Polymer, Polypyrrole, Scaffolds, Tissue, Tissue engineering, Viability


Fontana-Escartín, A, El Hauadi, K, Lanzalaco, S, Pérez-Madrigal, MM, Armelin, E, Turon, P, Alemán, C, (2023). Smart Design of Sensor-Coated Surgical Sutures for Bacterial Infection Monitoring Macromolecular Bioscience 23, 2300024

Virtually, all implantable medical devices are susceptible to infection. As the main healthcare issue concerning implantable devices is the elevated risk of infection, different strategies based on the coating or functionalization of biomedical devices with antiseptic agents or antibiotics are proposed. In this work, an alternative approach is presented, which consists of the functionalization of implantable medical devices with sensors capable of detecting infection at very early stages through continuous monitoring of the bacteria metabolism. This approach, which is implemented in surgical sutures as a representative case of implantable devices susceptible to bacteria colonization, is expected to minimize the risk of worsening the patient's clinical condition. More specifically, non-absorbable polypropylene/polyethylene (PP/PE) surgical sutures are functionalized with conducting polymers using a combination of low-pressure oxygen plasma, chemical oxidative polymerization, and anodic polymerization, to detect metabolites coming from bacteria respiration. Functionalized suture yarns are used for real-time monitoring of bacteria growth, demonstrating the potential of this strategy to fight against infections.© 2023 Wiley-VCH GmbH.

JTD Keywords: adhesion, biofilm, conducting polymers, contamination, derivatives, detections, functionalized sutures, nadh, poly(3,4-ethylenedioxythiophene), Bacteria growth, Conducting polymers, Detections, Functionalized sutures, Monofilament, Nadh


Borras, N, Sanchez-Sanz, A, Sans, J, Estrany, F, Perez-Madrigal, MM, Aleman, C, (2023). Flexible electroactive membranes for the electrochemical detection of dopamine European Polymer Journal 187, 111915

In addition of a key catecholamine neurotransmitter, dopamine is is the metabolite predominantly produced by specific types of tumors (e.g. paragangliomas and neuroblastomas), which cannot be diagnosed using conven-tional sensitive tests. Within this context, development of flexible electrochemical sensors to monitor dopamine levels in physiological fluids for the early diagnosis and control of diseases related to abnormal levels of such compound, is necessary. In this work, a flexible self-supported membrane, which acts directly as electrode, has been developed to detect dopamine. The membrane consists of three nanoperforated polylactic acid (PLA) layers, which provide flexibility and mechanical integrity, separated by two layers of an electroactive copolymer, which are obtained by electrochemical copolymerization of 3,4-ethylenedioxythiophene and aniline. The sensitivity and detection limit provided by the electroactive copolymer, which is accessible to dopamine molecules through the nanoperforations of the PLA outer layers, is 1.846 mu A/(cm2.mu M) and 1.7 mu M, respectively, in a urea-rich environments that mimics urine. These values allow us to propose the self-standing flexible electrodes devel-oped in this study for the detection of dopamine in patients affected by paragangliomas and neuroblastomas tumors, which typically present dopamine concentrations between 2 and 7 mu M.

JTD Keywords: 4-ethylenedioxythiophene), Conducting polymer, Electrochemical sensor, Electrodes, Hydrogels, Poly(3, Polyaniline, Polylactic acid, Selective detection, Sensors, Supercapacitors


Escartín, A, El Hauadi, K, Lanzalaco, S, Perez-Madrigal, MM, Armelin, E, Turon, P, Alemán, C, (2023). Preparation and Characterization of Functionalized Surgical Meshes for Early Detection of Bacterial Infections Acs Biomaterials Science & Engineering 9, 1104-1115

Isotactic polypropylene (i-PP) nonabsorbable surgical meshes are modified by incorporating a conducting polymer (CP) layer to detect the adhesion and growth of bacteria by sensing the oxidation of nicotinamide adenine dinucleotide (NADH), a metabolite produced by the respiration reactions of such microorganisms, to NAD+. A three-step process is used for such incorporation: (1) treat pristine meshes with low-pressure O2 plasma; (2) functionalize the surface with CP nanoparticles; and (3) coat with a homogeneous layer of electropolymerized CP using the nanoparticles introduced in (2) as polymerization nuclei. The modified meshes are stable and easy to handle and also show good electrochemical response. The detection by cyclic voltammetry of NADH within the interval of concentrations reported for bacterial cultures is demonstrated for the two modified meshes. Furthermore, Staphylococcus aureus and both biofilm-positive (B+) and biofilm-negative (B-) Escherichia coli cultures are used to prove real-time monitoring of NADH coming from aerobic respiration reactions. The proposed strategy, which offers a simple and innovative process for incorporating a sensor for the electrochemical detection of bacteria metabolism to currently existing surgical meshes, holds considerable promise for the future development of a new generation of smart biomedical devices to fight against post-operative bacterial infections.

JTD Keywords: adhesion, bacteria metabolism, behavior, biocompatibility, conducting polymer, electrochemical sensor, hernia repair, in-vivo, liquid, nadh detection, plasma treatment, prevention, reinforcement, sensor, smart meshes, Bacteria metabolism, Polypropylene mesh, Smart meshes


Munoz-Galan, H, Molina, BG, Bertran, O, Perez-Madrigal, MM, Aleman, C, (2022). Combining rapid and sustained insulin release from conducting hydrogels for glycemic control br European Polymer Journal 181, 111670

Innovative insulin delivery systems contemplate combining multi-pharmacokinetic profiles for glycemic control. Two device configurations have been designed for the controlled release of insulin using the same chemical compounds. The first insulin delivery system, which displays a rapid release response that, in addition, is enhanced on a short time scale by electrical stimulation, consists on an insulin layer sandwiched between a conducting poly(3,4-ethylenedioxythiophene) (PEDOT) film and a poly-gamma-glutamic acid (gamma-PGA) hydrogel. The second system is constituted by gamma-PGA hydrogel loaded with insulin and PEDOT nanoparticles by in situ gelation. In this case, the insulin release, which only starts after the degradation of the hydrogel over time (i.e. on a long time scale), is slow and sustained. The combination of an on-demand and fast release profile with a sustained and slow profile, which act on different time scales, would result in a very efficient regulation of diabetes therapy in comparison to current systems, allowing to control both fast and sustained glycemic events. Considering that the two systems developed in this work are based on the same chemical components, future work will be focused on the combination of the two kinetic profiles by re-engineering a unique insulin release device using gamma-PGA, PEDOT and insulin.

JTD Keywords: Conducting polymer, Constant, Diabetes, Diabetes-mellitus, Drug-delivery, Electrodes, Electrostimulation, Glucose-responsive hydrogels, Hydrogel, Molecular dynamics, Molecular-dynamics, Nanogels, Nanoparticles, Poly(3,4-ethylenedioxythiophene), Risk


Molina, BG, Vasani, RB, Jarvis, KL, Armelin, E, Voelcker, NH, Aleman, C, (2022). Dual pH- and electro-responsive antibiotic-loaded polymeric platforms for effective bacterial detection and elimination Reactive & Functional Polymers 181, 105434

We describe a multi-tasking flexible system that is able to release a wide spectrum antibiotic (levofloxacin, LVX) under electrostimulation and act as a pH sensor for detecting bacterial infections. Combining anodic polymer-ization with plasma polymerization processes we engineered dual pH-and electro-responsive polymeric systems. Particularly, the manufactured devices consisted on a layer of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHEDOT) loaded with the LVX antibiotic and coated with a plasma polymer layer of poly(acrylic acid) (PAA). The PHEDOT acted as conductive and electro-responsive agent, while the PAA provided pH responsiveness, changing from a compact globular conformation in acid environments to an expanded open coil conformation in alkaline environments. The assembly between the PHEDOT layer and the PAA coating affected the electro-chemical response of the former, becoming dependent on the pH detected by the latter. The conformational change experienced by the PAA layer as a function of the pH and the redox properties of PHEDOT were leveraged for the electrochemical detection of bacteria growth and for regulating the release of the LVX antibiotic, respectively. The effectiveness of the system as a stimulus-responsive antibiotic carrier and pH sensor was also investigated on strains of Escherichia coli and Streptococcus salivarius.

JTD Keywords: Conducting polymer, Delivery, Drug delivery, Electrostimulation, Levofloxacin, Ph sensor, Plasma, Poly(acrylic acid), Selective detection


García-Torres, J, Colombi, S, Macor, LP, Alemán, C, (2022). Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review International Journal Of Biological Macromolecules 219, 312-332

Poly(3,4-ethylenedioxythiophene) (PEDOT), a very stable and biocompatible conducting polymer, and alginate (Alg), a natural water-soluble polysaccharide mainly found in the cell wall of various species of brown algae, exhibit very different but at the same complementary properties. In the last few years, the remarkable capacity of Alg to form hydrogels and the electro-responsive properties of PEDOT have been combined to form not only layered composites (PEDOT-Alg) but also interpenetrated multi-responsive PEDOT/Alg hydrogels. These materials have been found to display outstanding properties, such as electrical conductivity, piezoelectricity, biocompatibility, self-healing and re-usability properties, pH and thermoelectric responsiveness, among others. Consequently, a wide number of applications are being proposed for PEDOT-Alg composites and, especially, PEDOT/Alg hydrogels, which should be considered as a new kind of hybrid material because of the very different chemical nature of the two polymeric components. This review summarizes the applications of PEDOT-Alg and PEDOT/Alg in tissue interfaces and regeneration, drug delivery, sensors, microfluidics, energy storage and evaporators for desalination. Special attention has been given to the discussion of multi-tasking applications, while the new challenges to be tackled based on aspects not yet considered in either of the two polymers have also been highlighted.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

JTD Keywords: aerogels, composite, conducting polymer, conducting polymers, electrodes, pedotpss, ph, platform, release, scaffold, semi-interpenetrated hydrogels, Alginates, Alginic acid, Bridged bicyclo compounds, heterocyclic, Conducting polymer, Drug-delivery, Hydrogels, Poly(3,4-ethylene dioxythiophene), Polymers, Polysaccharides, Semi-interpenetrated hydrogels, Water


Fontana-Escartin, A, Puiggalí-Jou, A, Lanzalaco, S, Bertran, O, Aleman, C, (2021). Manufactured Flexible Electrodes for Dopamine Detection: Integration of Conducting Polymer in 3D-Printed Polylactic Acid Advanced Engineering Materials 23, 2100002

Flexible electrochemical sensors based on electroactive materials have emerged as powerful analytical tools for biomedical applications requiring bioanalytes detection. Within this context, 3D printing is a remarkable technology for developing electrochemical devices, due to no design constraints, waste minimization, and batch manufacturing with high reproducibility. However, the fabrication of 3D printed electrodes is still limited by the in-house fabrication of conductive filaments, which requires the mixture of the electroactive material with melted of thermoplastic polymer (e.g., polylactic acid, PLA). Herein, a simple approach is presented for preparing electrochemical dopamine (DA) biosensors. Specifically, the surface of 3D-printed PLA specimens, which exhibit an elastic modulus and a tensile strength of 3.7 +/- 0.3 GPa and 47 +/- 1 MPa, respectively, is activated applying a 0.5 m NaOH solution for 30 min and, subsequently, poly(3,4-ethylenedioxythiophene) is polymerized in situ using aqueous solvent. The detection of DA with the produced sensors has been demonstrated by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In summary, the obtained results reflect that low-cost electrochemical sensors, which are widely used in medicine and biotechnology, can be rapidly fabricated using the proposed approach that, although based on additive manufacturing, does not require the preparation of conductive filaments.

JTD Keywords: 3d printers, Additive manufacturing, Amines, Batch manufacturing, Biomedical applications, Chronoamperometry, Conducting polymer, Conducting polymers, Conductive filaments, Conservation, Cyclic voltammetry, Differential pulse voltammetry, Electroactive material, Electrochemical biosensor, Electrochemical devices, Electrochemical sensors, Electrodes, Electron emission, Flexible electrode, High reproducibility, Medical applications, Neurophysiology, Poly-3 ,4-ethylenedioxythiophene, Polyesters, Polylactic aci, Sodium hydroxide, Tensile strength, Thermoplastic polymer


Enshaei, H, Puiggalí-Jou, A, del Valle, LJ, Turon, P, Saperas, N, Alemán, C, (2021). Nanotheranostic Interface Based on Antibiotic-Loaded Conducting Polymer Nanoparticles for Real-Time Monitoring of Bacterial Growth Inhibition Advanced Healthcare Materials 10, 2001636

© 2020 Wiley-VCH GmbH Conducting polymers have been increasingly used as biologically interfacing electrodes for biomedical applications due to their excellent and fast electrochemical response, reversible doping–dedoping characteristics, high stability, easy processability, and biocompatibility. These advantageous properties can be used for the rapid detection and eradication of infections associated to bacterial growth since these are a tremendous burden for individual patients as well as the global healthcare system. Herein, a smart nanotheranostic electroresponsive platform, which consists of chloramphenicol (CAM)-loaded in poly(3,4-ethylendioxythiophene) nanoparticles (PEDOT/CAM NPs) for concurrent release of the antibiotic and real-time monitoring of bacterial growth is presented. PEDOT/CAM NPs, with an antibiotic loading content of 11.9 ± 1.3% w/w, are proved to inhibit the growth of Escherichia coli and Streptococcus sanguinis due to the antibiotic release by cyclic voltammetry. Furthermore, in situ monitoring of bacterial activity is achieved through the electrochemical detection of β-nicotinamide adenine dinucleotide, a redox active specie produced by the microbial metabolism that diffuse to the extracellular medium. According to these results, the proposed nanotheranostic platform has great potential for real-time monitoring of the response of bacteria to the released antibiotic, contributing to the evolution of the personalized medicine.

JTD Keywords: bacterial detection, chloramphenicol, conducting polymers, drug, drug release, electrochemical sensors, electrochemistry, electrostimulated release, mechanism, peptide, polythiophene, sensor, sulfonate, Bacterial detection, Chloramphenicol, Conducting polymers, Controlled-release, Drug release, Electrochemical sensors, Electrostimulated release, Polythiophene


Puiggali-Jou, A, Ordoño, J, del Valle, LJ, Pérez-Amodio, S, Engel, E, Alemán, C, (2021). Tuning multilayered polymeric self-standing films for controlled release of L-lactate by electrical stimulation Journal Of Controlled Release 330, 669-683

© 2020 Elsevier B.V. We examine different approaches for the controlled release of L-lactate, which is a signaling molecule that participates in tissue remodeling and regeneration, such as cardiac and muscle tissue. Robust, flexible, and self-supported 3-layers films made of two spin-coated poly(lactic acid) (PLA) layers separated by an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layer, are used as loading and delivery systems. Films with outer layers prepared using homochiral PLA and with nanoperforations of diameter 146 ± 70 experience more bulk erosion, which also contributes to the release of L-lactic acid, than those obtained using heterochiral PLA and with nanoperforations of diameter 66 ± 24. Moreover, the release of L-lactic acid as degradation product is accelerated by applying biphasic electrical pulses. The four approaches used for loading extra L-lactate in the 3-layered films were: incorporation of L-lactate at the intermediate PEDOT layer as primary dopant agent using (1) organic or (2) basic water solutions as reaction media; (3) substitution at the PEDOT layer of the ClO4− dopant by L-lactate using de-doping and re-doping processes; and (4) loading of L-lactate at the outer PLA layers during the spin-coating process. Electrical stimuli were applied considering biphasic voltage pulses and constant voltages (both negative and positive). Results indicate that the approach used to load the L-lactate has a very significant influence in the release regulation process, affecting the concentration of released L-lactate up to two orders of magnitude. Among the tested approaches, the one based on the utilization of the outer layers for loading, approach (4), can be proposed for situations requiring prolonged and sustained L-lactate release over time. The biocompatibility and suitability of the engineered films for cardiac tissue engineering has also been confirmed using cardiac cells.

JTD Keywords: biphasic voltage pulse, cardiac tissue regeneration, cardiomyocytes proliferation, conducting polymer, nanoperforated films, sustained delivery, Biphasic voltage pulse, Cardiac tissue regeneration, Cardiomyocytes proliferation, Conducting polymer, Nanoperforated films, Sustained delivery


Puiggalí-Jou, A, Wedepohl, S, Theune, LE, Alemán, C, Calderón, M, (2021). Effect of conducting/thermoresponsive polymer ratio on multitasking nanogels Materials Science & Engineering C-Materials For Biological Applications 119, 111598

© 2020 Elsevier B.V. Semi-interpenetrated nanogels (NGs) able to release and sense diclofenac (DIC) have been designed to act as photothermal agents with the possibility to ablate cancer cells using mild-temperatures (<45 °C). Combining mild heat treatments with simultaneous chemotherapy appears as a very promising therapeutic strategy to avoid heat resistance or damaging the surrounding tissues. Particularly, NGs consisted on a poly(N-isopropylacrylamide) (PNIPAM) and dendritic polyglycerol (dPG) mesh containing a semi-interpenetrating network (SIPN) of poly(hydroxymethyl 3,4-ethylenedioxythiophene) (PHMeEDOT). The PHMeEDOT acted as photothermal and conducting agent, while PNIPAM-dPG NG provided thermoresponsivity and acted as stabilizer. We studied how semi-interpenetration modified the physicochemical characteristics of the thermoresponsive SIPN NGs and selected the best condition to generate a multifunctional photothermal agent. The thermoswitchable conductiveness of the multifunctional NGs and the redox activity of DIC could be utilized for its electrochemical detection. Besides, as proof of the therapeutic concept, we investigated the combinatorial effect of photothermal therapy (PTT) and DIC treatment using the HeLa cancer cell line in vitro. Within 15 min NIR irradiation without surpassing 45 °C we were able to kill 95% of the cells, demonstrating the potential of SIPN NGs as drug carriers, sensors and agents for mild PTT.

JTD Keywords: cells, cellulose, conducting polymers, controlled delivery, diclofenac, efficiency, electrochemical oxidation, electrochemical sensors, nanogels, nanoparticles, photothermal therapy, pnipam, poly(3,4-ethylenedioxythiophene), Conducting polymers, Electrochemical sensors, Nanogels, Photothermal therapy


Molina, B. G., Lopes-Rodrigues, M., Estrany, F., Michaux, C., Perpète, E. A., Armelin, E., Alemán, C., (2020). Free-standing flexible and biomimetic hybrid membranes for ions and ATP transport Journal of Membrane Science 601, 117931

The transport of metabolites across robust, flexible and free-standing biomimetic membranes made of three perforated poly (lactic acid) (pPLA) layers, separated by two anodically polymerized conducting layers of poly (3,4-ethylenedioxythiophene-co-3-dodecylthiophene), and functionalized on the external pPLA layers with a voltage dependent anion channel (VDAC) protein, has been demonstrated. The three pPLA layers offer robustness and flexibility to the bioactive platform and the possibility of obtaining conducing polymer layers by in situ anodic polymerization. The incorporation of dodecylthiophene units, which bear a 12 carbon atoms long linear alkyl chain, to the conducting layers allows mimicking the amphiphilic environment offered by lipids in cells, increasing 32% the efficiency of the functionalization. Electrochemical impedance measurements in NaCl and adenosine triphosphate (ATP) solutions prove that the integration of the VDAC porin inside the PLA perforations considerably increases the membrane conductivity and is crucial for the electrolyte diffusion. Such results open the door for the development of advanced sensing devices for a broad panel of biomedical applications.

JTD Keywords: Conducting polymers, Membrane proteins, Membranes, Polylactic acid, Self-supported films


Moghimiardekani, A., Molina, B. G., Enshaei, H., del Valle, L. J., Pérez-Madrigal, M. M., Estrany, F., Alemán, C., (2020). Semi-interpenetrated hydrogels-microfibers electroactive assemblies for release and real-time monitoring of drugs Macromolecular Bioscience 20, (7), 2000074

Simultaneous drug release and monitoring using a single polymeric platform represents a significant advance in the utilization of biomaterials for therapeutic use. Tracking drug release by real-time electrochemical detection using the same platform is a simple way to guide the dosage of the drug, improve the desired therapeutic effect, and reduce the adverse side effects. The platform developed in this work takes advantage of the flexibility and loading capacity of hydrogels, the mechanical strength of microfibers, and the capacity of conducting polymers to detect the redox properties of drugs. The engineered platform is prepared by assembling two spin-coated layers of poly-γ-glutamic acid hydrogel, loaded with poly(3,4-ethylenedioxythiophene) (PEDOT) microparticles, and separated by a electrospun layer of poly-ε-caprolactone microfibers. Loaded PEDOT microparticles are used as reaction nuclei for the polymerization of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT), that semi-interpenetrate the whole three layered system while forming a dense network of electrical conduction paths. After demonstrating its properties, the platform is loaded with levofloxacin and its release monitored externally by UV–vis spectroscopy and in situ by using the PHMeDOT network. In situ real-time electrochemical monitoring of the drug release from the engineered platform holds great promise for the development of multi-functional devices for advanced biomedical applications.

JTD Keywords: Biosensors, Conducting polymers, Drug delivery, Poly-γ-glutamic acid, Poly-ε-caprolactone


Molina, B. G., Cuesta, S., Besharatloo, H., Roa, J. J., Armelin, E., Alemán, C., (2019). Free-standing taradaic motors based on biocompatible nanoperforated poly(lactic acid) layers and electropolymerized poly(3,4-ethylenedioxythiophene) ACS Applied Materials and Interfaces 11, (32), 29427-29435

The electro-chemo-mechanical response of robust and flexible free-standing films made of three nanoperforated poly(lactic acid) (pPLA) layers separated by two anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layers has been demonstrated. The mechanical and electrochemical properties of these films, which are provided by pPLA and PEDOT, respectively, have been studied by nanoindentation, cyclic voltammetry, and galvanostatic charge-discharge assays. The unprecedented combination of properties obtained for this system is appropriated for its utilization as a Faradaic motor, also named artificial muscle. Application of square potential waves has shown important bending movements in the films, which can be repeated for more than 500 cycles without damaging its mechanical integrity. Furthermore, the actuator is able to push a huge amount of mass, as it has been proved by increasing the mass of the passive pPLA up to 328% while keeping the mass of electroactive PEDOT unaltered.

JTD Keywords: Actuator, Artificial muscle, Conducting polymer, Nanoindentation


Puiggalí-Jou, A., del Valle, L. J., Alemán, C., (2019). Drug delivery systems based on intrinsically conducting polymers Journal of Controlled Release 309, 244-264

This work provides an overview of the up to date research related to intrinsically conducting polymers (ICPs) and their function as novel drug delivery systems (DDSs). Drugs administrated to patients do not always reach the targeted organ, which may affect other tissues leading to undesired side-effects. To overcome these problems, DDSs are under development. Nowadays, it is possible to target the administration and, most importantly, to achieve a controlled drug dosage upon external stimuli. Particularly, the attention of this work focuses on the drug release upon electrical stimuli employing ICPs. These are well-known organic polymers with outstanding electrical properties similar to metals but also retaining some advantageous characteristics normally related to polymers, like mechanical stability and easiness of processing. Depending on the redox state, ICPs can incorporate or release anionic or cationic molecules on-demand. Besides, the releasing rate can be finely tuned by the type of electrical stimulation applied. Another interesting feature is that ICPs are capable to sense redox molecules such as dopamine, serotonin or ascorbic acid among others. Therefore, future prospects go towards the design of materials where the releasing rate could be self-adjusted in response to changes in the surrounding environment. This recompilation of ideas and projects provides a critic outline of ICPs synthesis progress related to their use as DDSs. Definitely, ICPs are a very promising branch of DDSs where the dose can be finely tuned by the exertion of an external stimulus, hence optimizing the repercussions of the drug and diminishing its side effects.

JTD Keywords: Controlled release, DDS, Drug delivery, Electrical stimuli, ICP, Intrinsically conducting polymers


Saborío, M. G., Svelic, P., Casanovas, J., Ruano, G., Pérez-Madrigal, M. M., Franco, L., Torras, J., Estrany, F., Alemán, C., (2019). Hydrogels for flexible and compressible free standing cellulose supercapacitors European Polymer Journal 118, 347-357

Cellulose-based supercapacitors display important advantages in comparison with devices fabricated with other materials, regarding environmental friendliness, flexibility, cost and versatility. Recent progress in the field has been mainly focused on the utilization of cellulose fibres as: structural mechanical reinforcement of electrodes; precursors of electrically active carbon-based materials; or primary electrolytes that act as reservoirs of secondary electrolytes. In this work, a flexible, lightweight, robust, portable and manageable all-carboxymethyl cellulose symmetric supercapacitor has been obtained by assembling two electrodes based on carboxymethyl cellulose hydrogels to a solid electrolytic medium formulated with the same material. Hydrogels, which were made by cross-linking carboxymethyl cellulose paste with citric acid in water, rendered not only effective solid electrolytic media by simply loading NaCl but also electroactive electrodes. For the latter, conducting polymer microparticles, which were loaded into the hydrogel network during the physical cross-linking step, were appropriately connected through the in situ anodic polymerization of a similar conducting polymer in aqueous medium, thus creating conduction paths. The performance of the assembled supercapacitors has been proved by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. This design opens a new window for the green and mass production of flexible cellulose-based supercapacitors.

JTD Keywords: Conducting polymer, Energy storage, Flexible electrodes, In situ polymerization, Wearable electronics


Ziyatdinov, A., Diaz, E. Fernández, Chaudry, A., Marco, S., Persaud, K., Perera, A., (2013). A software tool for large-scale synthetic experiments based on polymeric sensor arrays Sensors and Actuators B: Chemical 177, 596-604

This manuscript introduces a software tool that allows for the design of synthetic experiments in machine olfaction. The proposed software package includes both, a virtual sensor array that reproduces the diversity and response of a polymer array and tools for data generation. The synthetic array of sensors allows for the generation of chemosensor data with a variety of characteristics: unlimited number of sensors, support of multicomponent gas mixtures and full parametric control of the noise in the system. The artificial sensor array is inspired from a reference database of seventeen polymeric sensors with concentration profiles for three analytes. The main features in the sensor data, like sensitivity, diversity, drift and sensor noise, are captured by a set of models under simplified assumptions. The generator of sensor signals can be used in applications related to test and benchmarking of signal processing methods, neuromorphic simulations in machine olfaction and educational tools. The software is implemented in R language and can be freely accessed.

JTD Keywords: Gas Sensor Array, Conducting Polymers, Electronic Nose, Sensor Simulation, Synthetic Dataset, Benchmark, Educational Tool


Marco, S., Gutiérrez-Gálvez, A., Lansner, A., Martinez, D., Rospars, J. P., Beccherelli, R., Perera, A., Pearce, T., Vershure, P., Persaud, K., (2013). Biologically inspired large scale chemical sensor arrays and embedded data processing Proceedings of SPIE - The International Society for Optical Engineering Smart Sensors, Actuators, and MEMS VI , SPIE Digital Library (Grenoble, France) 8763, 1-15

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: The olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes.

JTD Keywords: Antennal lobes, Artificial olfaction, Computational neuroscience, Olfactory bulbs, Plume tracking, Abstracting, Actuators, Algorithms, Biomimetic processes, Chemical sensors, Conducting polymers, Data processing, Flavors, Odors, Robots, Smart sensors, Embedded systems


Mills, C. A., Pla, M., Martin, C., Lee, M., Kuphal, M., Sisquella, X., Martinez, E., Errachid, A., Samitier, J., (2007). Structured thin organic active layers and their use in electrochemical biosensors Measurement & Control , 40, (3), 88-91