DONATE

Publications

by Keyword: Poly(beta-amino ester)s

Navalon-Lopez, M, Dols-Perez, A, Grijalvo, S, Fornaguera, C, Borros, S, (2023). Unravelling the role of individual components in pBAE/polynucleotide polyplexes in the synthesis of tailored carriers for specific applications: on the road to rational formulations Nanoscale Advances 5, 1611-1623

Our study of pBAE polyplexes unveil their insight distribution and peptide-dependent properties. This analysis makes the gap from bench to bedside closer due to the possibility to select the most appropriate oligopeptide combination depending on the application.

JTD Keywords: gene delivery, Poly(beta-amino ester)s


Riera, Roger, Tauler, Jana, Feiner Gracia, Natàlia, Borrós, Salvador, Fornaguera, Cristina, Albertazzi, Lorenzo, (2022). Complex pBAE Nanoparticle Cell Trafficking: Tracking Both Position and Composition Using Super Resolution Microscopy Chemmedchem 17,

Nanomedicine emerged some decades ago with the hope to be the solution for most unmet medical needs. However, tracking materials at nanoscale is challenging to their reduced size, below the resolution limit of most conventional techniques. In this context, we propose the use of direct stochastic optical reconstruction microscopy (dSTORM) to study time stability and cell trafficking after transfection of oligopeptide end-modified poly(?-aminoester) (OM-pBAE) nanoparticles. We selected different combinations of cationic end oligopeptides (arginine - R; histidine - H; and lysine - K) among polymer libraries, since the oligopeptide combination demonstrated to be useful for different applications, such as vaccination and gene silencing. We demonstrate that their time evolution as well as their cell uptake and trafficking are dependent on the oligopeptide. This study opens the pave to broad mechanistic studies at nanoscale that could enable a rational selection of specific pBAE nanoparticles composition after determining their stability and cell trafficking.© 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH.

JTD Keywords: cancer nanomedicine, cell trafficking, delivery, direct stochastic optical reconstruction microscopy (dstorm), nanoparticle stability, poly(beta-aminoester) nanoparticles, Direct stochastic optical reconstruction microscopy (dstorm), Poly(?-aminoester) nanoparticles, Poly(beta-amino ester)s, Poly(β-aminoester) nanoparticles