by Keyword: Poly(ethylene glycol)
Kasapgil, E, Garay-Sarmiento, M, Rodriguez-Emmenegger, C, (2024). Advanced Antibacterial Strategies for Combatting Biomaterial-Associated Infections: A Comprehensive Review Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e2018
Biomaterial-associated infections (BAIs) pose significant challenges in modern medical technologies, being a major postoperative complication and leading cause of implant failure. These infections significantly risk patient health, resulting in prolonged hospitalization, increased morbidity and mortality rates, and elevated treatment expenses. This comprehensive review examines the mechanisms driving bacterial adhesion and biofilm formation on biomaterial surfaces, offering an in-depth analysis of current antimicrobial strategies for preventing BAIs. We explore antimicrobial-eluting biomaterials, contact-killing surfaces, and antifouling coatings, emphasizing the application of antifouling polymer brushes on medical devices. Recent advancements in multifunctional antimicrobial biomaterials, which integrate multiple mechanisms for superior protection against BAIs, are also discussed. By evaluating the advantages and limitations of these strategies, this review aims to guide the design and development of highly efficient and biocompatible antimicrobial biomaterials. We highlight potential design routes that facilitate the transition from laboratory research to clinical applications. Additionally, we provide insights into the potential of synthetic biology as a novel approach to combat antimicrobial resistance. This review aspires to inspire future research and innovation, ultimately improving patient outcomes and advancing medical device technology.
JTD Keywords: Animals, Anti-bacterial agents, Antifouling coatings, Antimicrobial peptide, Antimicrobial-eluting coatings, Antimicrobial‐eluting coatings, Bacterial adhesion, Bacterial biofilm formation, Biocompatible materials, Biofilms, Biomaterial-associated infections, Biomaterial‐associated infections, Contact killing coatings, Humans, In-vitr, Infused porous surfaces, Metal-oxide surfaces, Multifunctional antimicrobial coating, Multifunctional antimicrobial coatings, Poly(l-lysine)-g-poly(ethylene glycol) layers, Polymer brushes, Prosthesis-related infections, Silicone oil, Superhydrophobic surfaces, Urinary catheters
Molina, BG, Sanz-Farnos, J, Sánchez, S, Alemán, C, (2024). Ultrasensitive flexible pressure sensor for soft contraction detection Sensors And Actuators B-Chemical 416, 136005
We report the fabrication and characterization of a highly sensitive pressure sensor that has been successfully tested using 3D-bioprinted skeletal muscle tissue. The proposed pressure sensor consists of two assembled 3D printed specimens, which were obtained using 60/40 v/v poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) / poly(ethylene glycol) diacrylate (PEGDA) mixture, placed between two indium tin oxidecoated polyethylene terephthalate (PET-ITO) films. The printed specimens were shaped with a serrated structure, improving the sensitivity of the contact when pressed against PET-ITO film. Initially, the performance of the fabricated pressure sensor was tested using light cylindrical weights, which corresponded to pressures ranging from 0.99 to 14.71 kPa, and as prove of concept, carefully pressing with the finger (from 2.91 to 6.81 kPa). As the sensitivity and fast response of sensor were compatible with detection of soft muscle contractions, 3D-bioprinted skeletal muscle bioactuators were manufactured using myoblast cells. The contractions of the bioactuators, which were induced using electrical stimulation, exerted a pressure of 1.5 kPa only that was clearly and precisely detected by the sensor. Overall, the potential application of proposed pressure sensor for wearable and biomedical devices is evidenced by demonstrating its fast response time (< 50 ms) and sensitivity.
JTD Keywords: 4-ethylenedioxythiophene), Bioactuator, Healt, Hydrogels, Poly(3, Poly(ethylene glycol) diacrylate, Raman-spectroscopy, Soft electronics, Wearable electronic
Mohammed-Sadhakathullah, AHM, Paulo-Mirasol, S, Molina, BG, Torras, J, Armelin, E, (2024). PLA-PEG-Cholesterol biomimetic membrane for electrochemical sensing of antioxidants Electrochimica Acta 476, 143716
Polymeric membranes exhibit unique and modulate transport properties when they are properly functionalised, which make them ideal for ions transport, molecules separation and molecules interactions. The present work proposes the design and fabrication of nanostructured membranes, composed by biodegradable poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG), incorporating a lipophilic molecule (cholesterol) covalently bonded, were especially designed to provide even more application opportunities in sensors field. Electrochemical studies, by means of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV), revealed important differences regarding the functionalised and non-functionalised PLA systems. PEGcholesterol building block units showed a clear affinity with ascorbic acid (vitamin C) and Trolox (R) (a watersoluble analogue of vitamin E), both hydrophilic in nature, with a limit of detection capacity of 8.12 mu M for AA and 3.53 mu M for AA and Trolox, respectively, in aqueous salt solution. The bioinspired polymer may be used to incorporate antioxidant property that allow the design of anti-stress biosensors, electrodes for the detection of vitamin C or vitamin E in biomedical nutrition programs, among other applications.
JTD Keywords: Antioxidant molecules, Antioxidants, Application programs, Ascorbic acid, Biomimetics, C (programming language), Capacity, Chemical detection, Cholesterol, Cyclic voltammetry, Electrochemical detection, Electrochemical impedance spectroscopy, Functional polymers, Functionalized, Lactic acid, Molecules, Nanomembranes, Poly ethylene glycols, Poly lactic acid, Poly(ethylene glycol), Poly(ethyleneglycol), Poly(lactic acid), Polyethylene glycols, Vitamin-e
Oliver-Cervelló, L, Martin-Gómez, H, Gonzalez-Garcia, C, Salmeron-Sanchez, M, Ginebra, MP, Mas-Moruno, C, (2023). Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering Frontiers In Bioengineering And Biotechnology 11, 1192436
Mimicking bone extracellular matrix (ECM) is paramount to develop novel biomaterials for bone tissue engineering. In this regard, the combination of integrin-binding ligands together with osteogenic peptides represents a powerful approach to recapitulate the healing microenvironment of bone. In the present work, we designed polyethylene glycol (PEG)-based hydrogels functionalized with cell instructive multifunctional biomimetic peptides (either with cyclic RGD-DWIVA or cyclic RGD-cyclic DWIVA) and cross-linked with matrix metalloproteinases (MMPs)-degradable sequences to enable dynamic enzymatic biodegradation and cell spreading and differentiation. The analysis of the intrinsic properties of the hydrogel revealed relevant mechanical properties, porosity, swelling and degradability to engineer hydrogels for bone tissue engineering. Moreover, the engineered hydrogels were able to promote human mesenchymal stem cells (MSCs) spreading and significantly improve their osteogenic differentiation. Thus, these novel hydrogels could be a promising candidate for applications in bone tissue engineering, such as acellular systems to be implanted and regenerate bone or in stem cells therapy.Copyright © 2023 Oliver-Cervelló, Martin-Gómez, Gonzalez-Garcia, Salmeron-Sanchez, Ginebra and Mas-Moruno.
JTD Keywords: biomaterials, cross-linking, dwiva, functionalization, hydrogel, integrin, kinetics, marrow stromal cells, matrices, multifunctionality, myogenic differentiation, osteogenic differentiation, regeneration, stem-cells, Biomimetic peptides, Dwiva, Functionalization, Hydrogel, Multifunctionality, Osteogenic differentiation, Poly(ethylene glycol) hydrogels