DONATE

Publications

by Keyword: stem-cells

Krukiewicz, Katarzyna, Contessotto, Paolo, Nedjari, Salima, Martino, Mikael M, Redenski, Idan, Gabet, Yankel, Speranza, Giorgio, O'Brien, Timothy, Altankov, George, Awaja, Firas, (2024). Clinical potential of plasma-functionalized graphene oxide ultrathin sheets for bone and blood vessel regeneration: Insights from cellular and animal models Biomaterials Advances 161, 213867

Graphene and graphene oxide (GO), due to their unique chemical and physical properties, possess biochemical characteristics that can trigger intercellular signals promoting tissue regeneration. Clinical applications of thin GO-derived sheets have inspired the development of various tissue regeneration and repair approaches. In this study, we demonstrate that ultrathin sheets of plasma-functionalized and reduced GO, with the oxygen content ranging from 3.2 % to 22 % and the nitrogen content from 0 % to 8.3 %, retain their essential mechanical and molecular integrity, and exhibit robust potential for regenerating bone tissue and blood vessels across multiple cellular and animal models. Initially, we observed the growth of blood vessels and bone tissue in vitro using these functionalized GO sheets on human adipose-derived mesenchymal stem cells and umbilical vein endothelial cells. Remarkably, our study indicates a 2.5-fold increase in mineralization and two-fold increase in tubule formation even in media lacking osteogenic and angiogenic supplements. Subsequently, we observed the initiation, conduction, and formation of bone and blood vessels in a rat tibial osteotomy model, evident from a marked 4-fold increase in the volume of low radio-opacity bone tissue and a significant elevation in connectivity density, all without the use of stem cells or growth factors. Finally, we validated these findings in a mouse critical-size calvarial defect model (33 % higher healing rate) and a rat skin lesion model (up to 2.5-fold increase in the number of blood vessels, and 35 % increase in blood vessels diameter). This study elucidates the proosteogenic and pro-angiogenic properties of both pristine and plasma-treated GO ultrathin films. These properties suggest their significant potential for clinical applications, and as valuable biomaterials for investigating fundamental aspects of bone and blood vessel regeneration.

JTD Keywords: Adhesion, Angiogenesis, Biocompatibilit, Bone regeneratio, Coatings, Fibronectin, Graphene oxide, Growth, Mesenchymal stem-cells, Osteoblast, Osteogenic differentiation, Plasma treatment, Protein, Tissue regeneration


Garreta, Elena, Moya-Rull, Daniel, Marco, Andres, Amato, Gaia, Ullate-Agote, Asier, Tarantino, Carolina, Gallo, Maria, Esporrin-Ubieto, David, Centeno, Alberto, Vilas-Zornoza, Amaia, Mestre, Rafael, Kalil, Maria, Gorronogoitia, Izar, Zaldua, Ane Miren, Sanchez, Samuel, Reyes, Laura Izquierdo, Fernandez-Santos, Maria Eugenia, Prosper, Felipe, Montserrat, Nuria, (2024). Natural Hydrogels Support Kidney Organoid Generation and Promote In Vitro Angiogenesis Advanced Materials , 2400306

To date, strategies aiming to modulate cell to extracellular matrix (ECM) interactions during organoid derivation remain largely unexplored. Here renal decellularized ECM (dECM) hydrogels are fabricated from porcine and human renal cortex as biomaterials to enrich cell-to-ECM crosstalk during the onset of kidney organoid differentiation from human pluripotent stem cells (hPSCs). Renal dECM-derived hydrogels are used in combination with hPSC-derived renal progenitor cells to define new approaches for 2D and 3D kidney organoid differentiation, demonstrating that in the presence of these biomaterials the resulting kidney organoids exhibit renal differentiation features and the formation of an endogenous vascular component. Based on these observations, a new method to produce kidney organoids with vascular-like structures is achieved through the assembly of hPSC-derived endothelial-like organoids with kidney organoids in 3D. Major readouts of kidney differentiation and renal cell morphology are assessed exploiting these culture platforms as new models of nephrogenesis. Overall, this work shows that exploiting cell-to-ECM interactions during the onset of kidney differentiation from hPSCs facilitates and optimizes current approaches for kidney organoid derivation thereby increasing the utility of these unique cell culture platforms for personalized medicine. Natural hydrogels derived from decellularized porcine or human kidney tissues are used to generate kidney organoids from human pluripotent stem cells, resulting in the enrichment of organoids' endogenous vascular component and improved renal differentiation. Exploiting the autonomous capacity of kidney organoids to exhibit endogenous vascularization in combination with these biomaterials, a novel approach is established to generate endothelial-kidney assembloids showing vascular-like structures. image

JTD Keywords: Assembloids, Extracellular matrix-derived hydrogels, Extracellular-matrix, Human pluripotent stem cells, Kidney organoids, Pluripotent stem-cells, Tissu, Vascularizatio


Conti, Sefora, Venturini, Valeria, Canellas-Socias, Adria, Cortina, Carme, Abenza, Juan F, Attolini, Camille Stephan-Otto, Guerra, Emily Middendorp, Xu, Catherine K, Li, Jia Hui, Rossetti, Leone, Stassi, Giorgio, Roca-Cusachs, Pere, Diz-Munoz, Alba, Ruprecht, Verena, Guck, Jochen, Batlle, Eduard, Labernadie, Anna, Trepat, Xavier, (2024). Membrane to cortex attachment determines different mechanical phenotypes in LGR5+and LGR5-colorectal cancer cells Nature Communications 15, 3363

Colorectal cancer (CRC) tumors are composed of heterogeneous and plastic cell populations, including a pool of cancer stem cells that express LGR5. Whether these distinct cell populations display different mechanical properties, and how these properties might contribute to metastasis is poorly understood. Using CRC patient derived organoids (PDOs), we find that compared to LGR5- cells, LGR5+ cancer stem cells are stiffer, adhere better to the extracellular matrix (ECM), move slower both as single cells and clusters, display higher nuclear YAP, show a higher survival rate in response to mechanical confinement, and form larger transendothelial gaps. These differences are largely explained by the downregulation of the membrane to cortex attachment proteins Ezrin/Radixin/Moesin (ERMs) in the LGR5+ cells. By analyzing single cell RNA-sequencing (scRNA-seq) expression patterns from a patient cohort, we show that this downregulation is a robust signature of colorectal tumors. Our results show that LGR5- cells display a mechanically dynamic phenotype suitable for dissemination from the primary tumor whereas LGR5+ cells display a mechanically stable and resilient phenotype suitable for extravasation and metastatic growth. The mechanical properties of heterogeneous cell populations in colorectal tumors and the relevance to cancer metastasis remain not fully understood. Here, the authors suggest that the variations in malignant phenotypes between LGR5-positive cancer stem cells and LGR5-negative cells could be due to their distinct mechanical phenotypes observed in vitro, determined by the membrane to cortex attachment proteins Ezrin/Radixin/Moesin.

JTD Keywords: , , Adhesion, Deformability, E-cadherin, Erm proteins, Expression, Metastasis, Organization, Plasticit, Stem-cells, Tumor-cells


Humbert, P, Kampleitner, C, De Lima, J, Brennan, MA, Lodoso-Torrecilla, I, Sadowska, JM, Blanchard, F, Canal, C, Ginebra, MP, Hoffmann, O, Layrolle, P, (2024). Phase composition of calcium phosphate materials affects bone formation by modulating osteoclastogenesis Acta Biomaterialia 176, 417-431

Human mesenchymal stromal cells (hMSCs) seeded on calcium phosphate (CaP) bioceramics are extensively explored in bone tissue engineering and have recently shown effective clinical outcomes. In previous pre-clinical studies, hMSCs-CaP-mediated bone formation was preceded by osteoclastogenesis at the implantation site. The current study evaluates to what extent phase composition of CaPs affects the osteoclast response and ultimately influence bone formation. To this end, four different CaP bioceramics were used, hydroxyapatite (HA), beta-tricalcium phosphate (beta-TCP) and two biphasic composites of HA/beta- TCP ratios of 60/40 and 20/80 respectively, for in vitro osteoclast differentiation and correlation with in vivo osteoclastogenesis and bone formation. All ceramics allowed osteoclast formation in vitro from mouse and human precursors, except for pure HA, which significantly impaired their maturation. Ectopic implantation alongside hMSCs in subcutis sites of nude mice revealed new bone formation at 8 weeks in all conditions with relative amounts for beta-TCP > biphasic CaPs > HA. Surprisingly, while hMSCs were essential for osteoinduction, their survival did not correlate with bone formation. By contrast, the degree of early osteoclastogenesis (2 weeks) seemed to define the extent of subsequent bone formation. Together, our findings suggest that the osteoclastic response could be used as a predictive marker in hMSC-CaPbased bone regeneration and strengthens the need to understand the underlying mechanisms for future biomaterial development. Statement of significance The combination of mesenchymal stromal cells (MSCs) and calcium phosphate (CaP) materials has demonstrated its safety and efficacy for bone regeneration in clinical trials, despite our insufficient understanding of the underlying biological mechanisms. Osteoclasts were previously suggested as key mediators between the early inflammatory phase following biomaterial implantation and the subsequent bone formation. Here we compared the affinity of osteoclasts for various CaP materials with different ratios of hydroxyapatite to beta-tricalcium phosphate. We found that osteoclast formation, both in vitro and at early stages in vivo, correlates with bone formation when the materials were implanted alongside MSCs in mice. Surprisingly, MSC survival did not correlate with bone formation, suggesting that the number or phenotype of osteoclasts formed was more important. (c) 2024 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

JTD Keywords: Acid phosphatase tartrate resistant isoenzyme, Animal, Animal cell, Animal experiment, Animal tissue, Animals, Article, Beta-tricalcium phosphate, Bioceramics, Biocompatible materials, Biomaterial, Bone, Bone development, Bone formation, Bone regeneration, Calcium phosphate, Calcium phosphate materials, Calcium phosphates, Cd14 antigen, Cell differentiation, Cell engineering, Cell maturation, Cell survival, Ceramics, Chemical composition, Controlled study, Correlation analysis, Correlation coefficient, Data correlation, Durapatite, Engraftment, Flowcharting, Human, Human cell, Human mesenchymal stromal cell, Human mesenchymal stromal cells, Humans, Hydroxyapatite, Hydroxyapatites, In vitro study, In vivo study, In-vitro, In-vivo, Mammals, Marrow stromal cells, Material composition, Material compositions, Mesenchymal stroma cell, Mesenchymal stromal cells, Mice, Mice, nude, Monocyte, Mouse, Nonhuman, Nude mouse, Ossification, Osteoclast, Osteoclastogenesis, Osteoclasts, Osteogenesis, Osteoinduction, Phase composition, Regeneration strategies, Resorption, Scaffolds, Stem-cells, Subcutaneous tissue, Tissue engineering, Transmission control protocol, Tri-calcium phosphates, Vimentin


Liu, M, Zhang, C, Gong, XM, Zhang, T, Lian, MM, Chew, EGY, Cardilla, A, Suzuki, K, Wang, HM, Yuan, Y, Li, Y, Naik, MY, Wang, YX, Zhou, BR, Soon, WZ, Aizawa, E, Li, P, Low, JH, Tandiono, M, Montagud, E, Moya-Rull, D, Esteban, CR, Luque, Y, Fang, ML, Khor, CC, Montserrat, N, Campistol, JM, Belmonte, JCI, Foo, JN, Xia, Y, (2024). Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo Cell Stem Cell 31, 52-70.e8

Human pluripotent stem cell -derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single -cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA -approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.

JTD Keywords: Adenylate kinase, Adult, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Autophagosome, Autophagy, Autophagy (cellular), Autosomal-dominant, Calcium homeostasis, Cilia, Cilium, Cohort analysis, Controlled study, Cyclic amp, Disease, Dominant polycystic kidney, Enzyme linked immunosorbent assay, Epithelium, Exon, Expression, Female, Food and drug administration, Framework, Generation, Growth, Hepatitis a virus cellular receptor 1, Human, Human cell, Humans, Immunohistochemistry, In vitro study, In vivo study, Kidney, Kidney organoid, Kidney polycystic disease, Male, Minoxidil, Mouse, Mutations, Nonhuman, Organoid, Organoids, Platelet derived growth factor beta receptor, Pluripotent stem-cells, Polycystic kidney diseases, Protein kinase lkb1, Renin, Sequestosome 1, Single cell analysis, Single cell rna seq, Small nuclear rna, Tunel assay, Upregulation, Western blotting, Whole exome sequencing


Nauryzgaliyeva, Z, Corredera, IG, Garreta, E, Montserrat, N, (2023). Harnessing mechanobiology for kidney organoid research Frontiers In Cell And Developmental Biology 11, 1273923

Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.

JTD Keywords: development, hpscs, mechanobiology, nephrogenesis, Activated ion-channel, Development, Extracellular-matrix viscoelasticity, Forces, Hpscs, Ips cells, Mechanical regulation, Mechanobiology, Nephrogenesis, Nephron progenitors, Organoids, Pluripotent stem-cells, Self-renewal, Substrate mechanics, Tissue


Pereira, Ines, Lopez-Martinez, Maria J, Samitier, Josep, (2023). Advances in current in vitro models on neurodegenerative diseases Frontiers In Bioengineering And Biotechnology 11, 1260397

Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.

JTD Keywords: 3d in vitro models, bioprinting, ipsc cell culture, microfluidic device, 3d in vitro models, Bioprinting, Blood-brain-barrier, Cerebral organoids, Culture model, Endothelial-cells, Expression profile, Extracellular-matrix, Ipsc cell culture, Microfluidic device, Neurodegenerative diseases, On-a-chip, Pluripotent stem-cells, Shear-stress, Substrate stiffness


Gallo, J, Villasante, A, (2023). Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment International Journal Of Molecular Sciences 24, 15484

Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.

JTD Keywords: biomimetic nanoparticles, cancer treatment, diagnosis, drug-delivery, erythrocyte-membrane, facile synthesis, iron-oxide nanoparticles, magnetic nanoparticles, membrane-camouflaged nanoparticles, metastatic breast-cancer, size, stem-cells, Biomimetic nanoparticles, Cancer treatment, Membrane-camouflaged nanoparticles, Photothermal therapy


Sanz-Fraile, H, Herranz-Diez, C, Ulldemolins, A, Falcones, B, Almendros, I, Gavara, N, Sunyer, R, Farré, R, Otero, J, (2023). Characterization of Bioinks Prepared via Gelifying Extracellular Matrix from Decellularized Porcine Myocardia Gels 9, 745

Since the emergence of 3D bioprinting technology, both synthetic and natural materials have been used to develop bioinks for producing cell-laden cardiac grafts. To this end, extracellular-matrix (ECM)-derived hydrogels can be used to develop scaffolds that closely mimic the complex 3D environments for cell culture. This study presents a novel cardiac bioink based on hydrogels exclusively derived from decellularized porcine myocardium loaded with human-bone-marrow-derived mesenchymal stromal cells. Hence, the hydrogel can be used to develop cell-laden cardiac patches without the need to add other biomaterials or use additional crosslinkers. The scaffold ultrastructure and mechanical properties of the bioink were characterized to optimize its production, specifically focusing on the matrix enzymatic digestion time. The cells were cultured in 3D within the developed hydrogels to assess their response. The results indicate that the hydrogels fostered inter-cell and cell-matrix crosstalk after 1 week of culture. In conclusion, the bioink developed and presented in this study holds great potential for developing cell-laden customized patches for cardiac repair.

JTD Keywords: biology, biomaterials, collagen, decellularized cardiac tissue, extracellular matrix, hydrogels, mesenchymal stromal cells, 3d bioprinting, Biomaterials, Decellularized cardiac tissue, Extracellular matrix, Hydrogels, Mesenchymal stem-cells, Mesenchymal stromal cells


Martorell, L, López-Fernández, A, García-Lizarribar, A, Sabata, R, Gálvez-Martín, P, Samitier, J, Vives, J, (2023). Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds Biotechnology And Bioengineering 120, 2717-2724

Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell-based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell-loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel-based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105(+)/CD45,(-) 10.3% HLA-DR,(+) 100.0% CD90,(+) and 99.2% CD73(+)/CD31(-) expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 +/- 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.

JTD Keywords: critical quality attributes, human mesenchymal stromal cells, osteogenic differentiation, potency, substances of human origin (soho), 3d bioprinting, Critical quality attributes, Human mesenchymal stromal cells, Osteogenic differentiation, Potency, Stem-cells, Substances of human origin (soho)


Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683

Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.

JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Drug delivery systems, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Humans, Lysosomal storage diseases, Lysosomal storage disorders, Lysosomes, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems, Polymers, Tissue distribution


Oliver-Cervelló, L, Martin-Gómez, H, Gonzalez-Garcia, C, Salmeron-Sanchez, M, Ginebra, MP, Mas-Moruno, C, (2023). Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering Frontiers In Bioengineering And Biotechnology 11, 1192436

Mimicking bone extracellular matrix (ECM) is paramount to develop novel biomaterials for bone tissue engineering. In this regard, the combination of integrin-binding ligands together with osteogenic peptides represents a powerful approach to recapitulate the healing microenvironment of bone. In the present work, we designed polyethylene glycol (PEG)-based hydrogels functionalized with cell instructive multifunctional biomimetic peptides (either with cyclic RGD-DWIVA or cyclic RGD-cyclic DWIVA) and cross-linked with matrix metalloproteinases (MMPs)-degradable sequences to enable dynamic enzymatic biodegradation and cell spreading and differentiation. The analysis of the intrinsic properties of the hydrogel revealed relevant mechanical properties, porosity, swelling and degradability to engineer hydrogels for bone tissue engineering. Moreover, the engineered hydrogels were able to promote human mesenchymal stem cells (MSCs) spreading and significantly improve their osteogenic differentiation. Thus, these novel hydrogels could be a promising candidate for applications in bone tissue engineering, such as acellular systems to be implanted and regenerate bone or in stem cells therapy.Copyright © 2023 Oliver-Cervelló, Martin-Gómez, Gonzalez-Garcia, Salmeron-Sanchez, Ginebra and Mas-Moruno.

JTD Keywords: biomaterials, cross-linking, dwiva, functionalization, hydrogel, integrin, kinetics, marrow stromal cells, matrices, multifunctionality, myogenic differentiation, osteogenic differentiation, regeneration, stem-cells, Biomimetic peptides, Dwiva, Functionalization, Hydrogel, Multifunctionality, Osteogenic differentiation, Poly(ethylene glycol) hydrogels


Selt, F, Sigaud, R, Valinciute, G, Sievers, P, Zaman, J, Alco, C, Schmid, S, Peterziel, H, Tsai, JW, Guiho, R, Martínez-Barbera, JP, Pusch, S, Deng, J, Zhai, YF, van Tilburg, CM, Schuhman, MU, Damaty, AEL, Bandopadhayay, P, Herold-Mende, C, von Deimling, A, Pfister, SM, Montero, J, Capper, D, Oehme, I, Sahm, F, Jones, DTW, Witt, O, Milde, T, (2023). BH3 mimetics targeting BCL-XL impact the senescent compartment of pilocytic astrocytoma Neuro-Oncology 25, 735-747

Background Pilocytic astrocytoma (PA) is the most common pediatric brain tumor and a mitogen-activated protein kinase (MAPK)-driven disease. Oncogenic MAPK-signaling drives the majority of cells into oncogene-induced senescence (OIS). While OIS induces resistance to antiproliferative therapies, it represents a potential vulnerability exploitable by senolytic agents. Methods We established new patient-derived PA cell lines that preserve molecular features of the primary tumors and can be studied in OIS and proliferation depending on expression or repression of the SV40 large T antigen. We determined expression of anti-apoptotic BCL-2 members in these models and primary PA. Dependence of senescent PA cells on anti-apoptotic BCL-2 members was investigated using a comprehensive set of BH3 mimetics. Results Senescent PA cells upregulate BCL-XL upon senescence induction and show dependency on BCL-XL for survival. BH3 mimetics with high affinity for BCL-XL (BCL-XLi) reduce metabolic activity and induce mitochondrial apoptosis in senescent PA cells at nano-molar concentrations. In contrast, BH3 mimetics without BCL-XLi activity, conventional chemotherapy, and MEK inhibitors show no effect. Conclusions Our data demonstrate that BCL-XL is critical for survival of senescent PA tumor cells and provides proof-of-principle for the use of clinically available BCL-XL-dependent senolytics.

JTD Keywords: bcl-xl, bh3 mimetics, oncogene-induced senescence, Bcl-xl, Bh3 mimetics, Expression, Family, Inhibitor, Low-grade glioma, Navitoclax, Oncogene-induced senescence, Pilocytic astrocytoma, Stem-cells


Fontcuberta-PiSunyer, M, García-Alamán, A, Prades, É, Téllez, N, Alves-Figueiredo, H, Ramos-Rodríguez, M, Enrich, C, Fernandez-Ruiz, R, Cervantes, S, Clua, L, Ramón-Azcón, J, Broca, C, Wojtusciszyn, A, Montserrat, N, Pasquali, L, Novials, A, Servitja, JM, Vidal, J, Gomis, R, Gasa, R, (2023). Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors Commun Biol 6, 256

Direct lineage reprogramming of one somatic cell into another without transitioning through a progenitor stage has emerged as a strategy to generate clinically relevant cell types. One cell type of interest is the pancreatic insulin-producing β cell whose loss and/or dysfunction leads to diabetes. To date it has been possible to create β-like cells from related endodermal cell types by forcing the expression of developmental transcription factors, but not from more distant cell lineages like fibroblasts. In light of the therapeutic benefits of choosing an accessible cell type as the cell of origin, in this study we set out to analyze the feasibility of transforming human skin fibroblasts into β-like cells. We describe how the timed-introduction of five developmental transcription factors (Neurog3, Pdx1, MafA, Pax4, and Nkx2-2) promotes conversion of fibroblasts toward a β-cell fate. Reprogrammed cells exhibit β-cell features including β-cell gene expression and glucose-responsive intracellular calcium mobilization. Moreover, reprogrammed cells display glucose-induced insulin secretion in vitro and in vivo. This work provides proof-of-concept of the capacity to make insulin-producing cells from human fibroblasts via transcription factor-mediated direct reprogramming.© 2023. The Author(s).

JTD Keywords: adult, beta-cells, differentiation, direct conversion, genes, in-vivo, islets, maturation, pancreatic progenitors, Pluripotent stem-cells


Resina, L, El Hauadi, K, Sans, J, Esteves, T, Ferreira, FC, Perez-Madrigal, MM, Aleman, C, (2023). Electroresponsive and pH-Sensitive Hydrogel as Carrier for Controlled Chloramphenicol Release Biomacromolecules 24, 1432-1444

Multiresponsive hydrogels, which are smart soft materials that respond to more than one external stimulus, have emerged as powerful tools for biomedical applications, such as drug delivery. Within this context and with the aim of eliminating the systematic administration of antibiotics, special attention is being paid to the development of systems for controlled delivery of antibiotic for topical treatment of bacterial infections. In this work, an electro-chemo responsive hydrogel able to release chloramphenicol (CAM), a broad spectrum antibiotic also used for anticancer therapy, is proposed. This has been prepared by grafting poly(acrylic acid) (PAA) to sodium alginate (Alg) and in situ encapsulation of poly(3,4-ethylenedioxythiophene) nanoparticles loaded with CAM (PEDOT/CAM NPs), which were obtained by emulsion polymerization. Although the response to electrical stimuli of PEDOT was the main control for the release of CAM from PEDOT/CAM NPs, the release by passive diffusion had a relatively important contribution. Conversely, the passive release of antibiotic from the whole engineered hydrogel system, Alg-g-PAA/PEDOT/CAM, was negligible, whereas significant release was achieved under electrostimulation in an acid environment. Bacterial tests and assays with cancer cells demonstrated that the biological activity of CAM remained after release by electrical stimulation. Notably, the successful dual-response of the developed hydrogel to electrical stimuli and pH changes evidence the great prospect of this smart material in the biomedical field, as a tool to fight against bacterial infections and to provide local cancer treatment.

JTD Keywords: drug-delivery, films, growth, nanoparticles, Cancer stem-cells


Pereira, Ines, Lopez-Martinez, Maria J, Villasante, Aranzazu, Introna, Clelia, Tornero, Daniel, Canals, Josep M, Samitier, Josep, (2023). Hyaluronic acid-based bioink improves the differentiation and network formation of neural progenitor cells Frontiers In Bioengineering And Biotechnology 11, 1110547

Introduction: Three-dimensional (3D) bioprinting is a promising technique for the development of neuronal in vitro models because it controls the deposition of materials and cells. Finding a biomaterial that supports neural differentiation in vitro while ensuring compatibility with the technique of 3D bioprinting of a self-standing construct is a challenge.Methods: In this study, gelatin methacryloyl (GelMA), methacrylated alginate (AlgMA), and hyaluronic acid (HA) were examined by exploiting their biocompatibility and tunable mechanical properties to resemble the extracellular matrix (ECM) and to create a suitable material for printing neural progenitor cells (NPCs), supporting their long-term differentiation. NPCs were printed and differentiated for up to 15 days, and cell viability and neuronal differentiation markers were assessed throughout the culture.Results and Discussion: This composite biomaterial presented the desired physical properties to mimic the ECM of the brain with high water intake, low stiffness, and slow degradation while allowing the printing of defined structures. The viability rates were maintained at approximately 80% at all time points. However, the levels of beta-III tubulin marker increased over time, demonstrating the compatibility of this biomaterial with neuronal cell culture and differentiation. Furthermore, these cells showed increased maturation with corresponding functional properties, which was also demonstrated by the formation of a neuronal network that was observed by recording spontaneous activity via Ca2+ imaging.

JTD Keywords: biomaterials, bioprinting, differentiation, in vitro models, neural progenitor cells, 2d, Biomaterials, Bioprinting, C17.2, Differentiation, Extracellular-matrix, Hydrogels, In vitro models, In-vitro, Neural progenitor cells, Neuronal models, Proliferation, Scaffolds, Stem-cells, Substrate stiffness


Matejcic, M, Trepat, X, (2023). Mechanobiological approaches to synthetic morphogenesis: learning by building Trends In Cell Biology 33, 95-111

Tissue morphogenesis occurs in a complex physicochemical microenvironment with limited experimental accessibility. This often prevents a clear identification of the processes that govern the formation of a given functional shape. By applying state-of-the-art methods to minimal tissue systems, synthetic morphogenesis aims to engineer the discrete events that are necessary and sufficient to build specific tissue shapes. Here, we review recent advances in synthetic morphogenesis, highlighting how a combination of microfabrication and mechanobiology is fostering our understanding of how tissues are built.Copyright © 2022 Elsevier Ltd. All rights reserved.

JTD Keywords: cell dynamics, elongation, endothelial-cells, epithelium, growth, lumen, mechanical tension, patterns, self-organization, synthetic morphogenesis, tissue folding, tissue mechanics, topological defects, Cell dynamics, Humans, Morphogenesis, Stem-cells, Synthetic morphogenesis, Tissue folding, Tissue mechanics, Tissue shape


Badiola-Mateos, M, Osaki, T, Kamm, RD, Samitier, J, (2022). In vitro modelling of human proprioceptive sensory neurons in the neuromuscular system Scientific Reports 12, 21318

Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.© 2022. The Author(s).

JTD Keywords: Amyotrophic-lateral-sclerosis,pluripotent stem-cells,peripheral nervous-system,stretch reflex arc,mechanosensory circuit,cellular-localization,molecular-cloning,motor-neurons,muscle,expressio


Cañellas-Socias, A, Cortina, C, Hernando-Momblona, X, Palomo-Ponce, S, Mulholland, EJ, Turon, G, Mateo, L, Conti, S, Roman, O, Sevillano, M, Slebe, F, Stork, D, Caballé-Mestres, A, Berenguer-Llergo, A, Alvarez-Varela, A, Fenderico, N, Novellasdemunt, L, Jiménez-Gracia, L, Sipka, T, Bardia, L, Lorden, P, Colombelli, J, Heyn, H, Trepat, X, Tejpar, S, Sancho, E, Tauriello, DVF, Leedham, S, Attolini, CSO, Batlle, E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-613

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Article, Cancer, Cancer growth, Cancer immunotherapy, Cancer inhibition, Cancer recurrence, Cancer staging, Cell, Cell adhesion, Cell migration, Cell population, Cell surface receptor, Cohort analysis, Colorectal cancer, Colorectal neoplasms, Colorectal tumor, Comprehensive molecular characterization, Controlled study, Crispr-cas9 system, Cytoskeleton, Disease exacerbation, Disease progression, Dynamics, Emp1 gene, Epithelial membrane protein-1, Extracellular matrix, Flow cytometry, Fluorescence intensity, Gene expression, Genetics, Human, Human cell, Humans, Immune response, Immunofluorescence, In situ hybridization, Marker gene, Metastasis potential, Mice, Minimal residual disease, Mouse, Neoplasm proteins, Neoplasm recurrence, local, Neoplasm, residual, Nonhuman, Pathology, Phenotype, Prevention and control, Protein, Receptors, cell surface, Single cell rna seq, Tumor, Tumor protein, Tumor recurrence


Larrañaga, E, Fernández-Majada, V, Ojosnegros, S, Comelles, J, Martinez, E, (2022). Ephrin Micropatterns Exogenously Modulate Cell Organization in Organoid‐Derived Intestinal Epithelial Monolayers Advanced Materials Interfaces 9, 2201301

Widhe, M, Diez-Escudero, A, Liu, YL, Ringstrom, N, Ginebra, MP, Persson, C, Hedhammar, M, Mestres, G, (2022). Functionalized silk promotes cell migration into calcium phosphate cements by providing macropores and cell adhesion motifs Ceramics International 48, 31449-31460

Calcium phosphate cements (CPCs) are attractive synthetic bone grafts as they possess osteoconductive and osteoinductive properties. Their biomimetic synthesis grants them an intrinsic nano-and microporosity that resembles natural bone and is paramount for biological processes such as protein adhesion, which can later enhance cell adhesion. However, a main limitation of CPCs is the lack of macroporosity, which is crucial to allow cell colonization throughout the scaffold. Moreover, CPCs lack specific motifs to guide cell interactions through their membrane proteins. In this study, we explore a strategy targeting simultaneously both macroporosity and cell binding motifs within CPCs by the use of recombinant silk. A silk protein functionalized with the cell binding motif RGD serves as foaming template of CPCs to achieve biomimetic hydroxyapatite (HA) scaffolds with multiscale porosity. The synergies of RGD-motifs in the silk macroporous template and the biomimetic features of HA are explored for their potential to enhance mesenchymal stem cell adhesion, proliferation, migration and differentiation. Macroporous Silk-HA scaffolds improve initial cell adhesion compared to a macroporous HA in the absence of silk, and importantly, the presence of silk greatly enhances cell migration into the scaffold. Additionally, cell proliferation and osteogenic differentiation are achieved in the scaffolds.

JTD Keywords: Bioceramics, Bone, Bone regeneration, Composites, Degradation, Fabrication, Hydroxyapatite, Hydroxyapatite scaffolds, Injectability, Porosity, Recombinant spider silk, Rgd motifs, Silk, Stem-cells


Mochi, F, Scatena, E, Rodriguez, D, Ginebra, MP, Del Gaudio, C, (2022). Scaffold-based bone tissue engineering in microgravity: potential, concerns and implications Npj Microgravity 8, 45

One of humanity's greatest challenges is space exploration, which requires an in-depth analysis of the data continuously collected as a necessary input to fill technological gaps and move forward in several research sectors. Focusing on space crew healthcare, a critical issue to be addressed is tissue regeneration in extreme conditions. In general, it represents one of the hottest and most compelling goals of the scientific community and the development of suitable therapeutic strategies for the space environment is an urgent need for the safe planning of future long-term manned space missions. Osteopenia is a commonly diagnosed disease in astronauts due to the physiological adaptation to altered gravity conditions. In order to find specific solutions to bone damage in a reduced gravity environment, bone tissue engineering is gaining a growing interest. With the aim to critically investigate this topic, the here presented review reports and discusses bone tissue engineering scenarios in microgravity, from scaffolding to bioreactors. The literature analysis allowed to underline several key points, such as the need for (i) biomimetic composite scaffolds to better mimic the natural microarchitecture of bone tissue, (ii) uniform simulated microgravity levels for standardized experimental protocols to expose biological materials to the same testing conditions, and (iii) improved access to real microgravity for scientific research projects, supported by the so-called democratization of space.© 2022. The Author(s).

JTD Keywords: biomaterials, collagen/hydroxyapatite, composite scaffolds, in-vitro, mineralization, proliferation, regenerative medicine, stem-cells, vivo, Hydroxyapatite scaffolds


Lopez-Canosa, A, Perez-Amodio, S, Engel, E, Castano, O, (2022). Microfluidic 3D Platform to Evaluate Endothelial Progenitor Cell Recruitment by Bioactive Materials Acta Biomaterialia 151, 264-277

Most of the conventional in vitro models to test biomaterial-driven vascularization are too simplistic to recapitulate the complex interactions taking place in the actual cell microenvironment, which results in a poor prediction of the in vivo performance of the material. However, during the last decade, cell culture models based on microfluidic technology have allowed attaining unprecedented levels of tissue biomimicry. In this work, we propose a microfluidic-based 3D model to evaluate the effect of bioactive biomaterials capable of releasing signalling cues (such as ions or proteins) in the recruitment of endogenous endothelial progenitor cells, a key step in the vascularization process. The usability of the platform is demonstrated using experimentally-validated finite element models and migration and proliferation studies with rat endothelial progenitor cells (rEPCs) and bone marrow-derived rat mesenchymal stromal cells (BM-rMSCs). As a proof of concept of biomaterial evaluation, the response of rEPCs to an electrospun composite made of polylactic acid with calcium phosphates nanoparticles (PLA+CaP) was compared in a co-culture microenvironment with BM-rMSC to a regular PLA control. Our results show a significantly higher rEPCs migration and the upregulation of several pro-inflammatory and proangiogenic proteins in the case of the PLA+CaP. The effects of osteopontin (OPN) on the rEPCs migratory response were also studied using this platform, suggesting its important role in mediating their recruitment to a calcium-rich microenvironment. This new tool could be applied to screen the capacity of a variety of bioactive scaffolds to induce vascularization and accelerate the preclinical testing of biomaterials. STATEMENT OF SIGNIFICANCE: : For many years researchers have used neovascularization models to evaluate bioactive biomaterials both in vitro, with low predictive results due to their poor biomimicry and minimal control over cell cues such as spatiotemporal biomolecule signaling, and in vivo models, presenting drawbacks such as being highly costly, time-consuming, poor human extrapolation, and ethically controversial. We describe a compact microphysiological platform designed for the evaluation of proangiogenesis in biomaterials through the quantification of the level of sprouting in a mimicked endothelium able to react to gradients of biomaterial-released signals in a fibrin-based extracellular matrix. This model is a useful tool to perform preclinical trustworthy studies in tissue regeneration and to better understand the different elements involved in the complex process of vascularization.Copyright © 2022. Published by Elsevier Ltd.

JTD Keywords: angiogenesis, bioactive materials, bone regeneration, bone-formation, calcium-phosphate, extracellular calcium, in-vitro, interstitial flow, ion release, microfluidic model, signalling gradient, substitutes, tissue engineering, vascularization, vegf, Ion release, Mesenchymal stem-cells, Tissue engineering, Vascularization


Oliver-Cervelló, L, Martin-Gómez, H, Mandakhbayar, N, Jo, YW, Cavalcanti-Adam, EA, Kim, HW, Ginebra, MP, Lee, JH, Mas-Moruno, C, (2022). Mimicking Bone Extracellular Matrix: From BMP-2-Derived Sequences to Osteogenic-Multifunctional Coatings Advanced Healthcare Materials 11, e2201339

Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule. In this work, the wrist and knuckle epitopes of BMP-2 are screened to identify peptides with potential osteogenic properties. The most active sequences (the DWIVA motif and its cyclic version) are combined with the cell adhesive RGD peptide (linear and cyclic variants), to produce tailor-made biomimetic peptides presenting the bioactive cues in a chemically and geometrically defined manner. Such multifunctional peptides are next used to functionalize titanium surfaces. Biological characterization with mesenchymal stem cells demonstrates the ability of the biointerfaces to synergistically enhance cell adhesion and osteogenic differentiation. Furthermore, in vivo studies in rat calvarial defects prove the capacity of the biomimetic coatings to improve new bone formation and reduce fibrous tissue thickness. These results highlight the potential of mimicking integrin-GF signaling with synthetic peptides, without the need for exogenous GFs.© 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.

JTD Keywords: adhesion formation, bmp-2, cell adhesions, in-vivo, integrin, mesenchymal stem-cells, morphogenetic protein-2, multifunctionality, osteoblastic differentiation, osteogenic differentiation, rgd-dwiva, rgd-peptides, titanium biofunctionalization, titanium surfaces, Animals, Biocompatible materials, Biomimetic peptides, Bone morphogenetic protein 2, Bone regeneration, Cell adhesions, Cell differentiation, Epitopes, Extracellular matrix, Integrins, Marrow stromal cells, Multifunctionality, Osteogenesis, Osteogenic differentiation, Peptides, Rats, Rgd-dwiva, Titanium, Titanium biofunctionalization


Sala-Jarque, J, Zimkowska, K, Avila, J, Ferrer, I, del Rio, JA, (2022). Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn from Cell-Based In Vitro Assays? International Journal Of Molecular Sciences 23, 11527

Tauopathies are a group of neurodegenerative diseases characterized by the hyperphosphorylation and deposition of tau proteins in the brain. In Alzheimer's disease, and other related tauopathies, the pattern of tau deposition follows a stereotypical progression between anatomically connected brain regions. Increasing evidence suggests that tau behaves in a "prion-like" manner, and that seeding and spreading of pathological tau drive progressive neurodegeneration. Although several advances have been made in recent years, the exact cellular and molecular mechanisms involved remain largely unknown. Since there are no effective therapies for any tauopathy, there is a growing need for reliable experimental models that would provide us with better knowledge and understanding of their etiology and identify novel molecular targets. In this review, we will summarize the development of cellular models for modeling tau pathology. We will discuss their different applications and contributions to our current understanding of the "prion-like" nature of pathological tau.

JTD Keywords: neurodegeneration, seeding, spreading, Culture model, Efficient generation, Extracellular tau, Familial alzheimers-disease, Microtubule-associated protein, Mouse model, Neurodegeneration, Neurofibrillary tangles, Paired helical filaments, Pathogenic tau, Pluripotent stem-cells, Seeding, Spreading, Tauopathies


Safi, W, Marco, A, Moya, D, Prado, P, Garreta, E, Montserrat, N, (2022). Assessing kidney development and disease using kidney organoids and CRISPR engineering Frontiers In Cell And Developmental Biology 10, 948395

The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.Copyright © 2022 Safi, Marco, Moya, Prado, Garreta and Montserrat.

JTD Keywords: crispr, directed differentiation, epithelial-cells, expression, kidney engineering, kidney organoids, model, mouse, nephrogenesis, nephron number, podocytes, progenitor, Crispr, Kidney engineering, Kidney organoids, Nephrogenesis, Pluripotent stem cells, Pluripotent stem-cells


Marhuenda, E, Villarino, A, Narciso, M, Elowsson, L, Almendros, I, Westergren-Thorsson, G, Farre, R, Gavara, N, Otero, J, (2022). Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices Frontiers In Pharmacology 13, 945134

Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, characterized by a highly aberrant inflammatory response. Pre-clinical models to study the effect of cell therapy and anti-inflammatory treatments have not comprehensively reproduced the disease due to its high complexity. This work presents a novel physiomimetic in vitro model for Acute Respiratory Distress Syndrome using lung extracellular matrix-derived hydrogels and organ-on-a-chip devices. Monolayres of primary alveolar epithelial cells were cultured on top of decellullarized lung hydrogels containing primary lung mesenchymal stromal cells. Then, cyclic stretch was applied to mimic breathing, and an inflammatory response was induced by using a bacteriotoxin hit. Having simulated the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory drug (i.e., dexamethasone) by studying the secretion of the most relevant inflammatory cytokines. To better identify key players in our model, the impact of the individual factors (cyclic stretch, decellularized lung hydrogel scaffold, and the presence of mesenchymal stromal cells) was studied separately. Results showed that developed model presented a more reduced inflammatory response than traditional models, which is in line with what is expected from the response commonly observed in patients. Further, from the individual analysis of the different stimuli, it was observed that the use of extracellular matrix hydrogels obtained from decellularized lungs had the most significant impact on the change of the inflammatory response. The developed model then opens the door for further in vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the test of different drugs or cell therapy.

JTD Keywords: alveolar epithelial cells, ards, extracellular matrix, hydrogels, inflammation, lung-on-a-chip, Acute lung injury, Alveolar epithelial cells, Ards, Dexamethasone, Epithelial-mesenchymal transition, Extracellular matrix, Extracellular-matrix, Hydrogels, Inflammation, Lung-on-a-chip, Mesenchymal stromal cells, Oxygen, Stem-cells


Astro, V, Ramirez-Calderon, G, Pennucci, R, Caroli, J, Saera-Vila, A, Cardona-Londono, K, Forastieri, C, Fiacco, E, Maksoud, F, Alowaysi, M, Sogne, E, Falqui, A, Gonzalez, F, Montserrat, N, Battaglioli, E, Mattevi, A, Adamo, A, (2022). Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism Iscience 25, 104665

The histone demethylase KDM1A is a multi- faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A(-/-) hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a(-/-) hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells.

JTD Keywords: cell biology, molecular mechanism of gene regulation, omics, Bhlh transcription factor, Corest, Differentiation, Dna, Embryonic stem-cells, Heart, Lsd1, Phosphorylation, Proteins, Stem cells research, Swirm domain


Aydin, O, Passaro, AP, Raman, R, Spellicy, SE, Weinberg, RP, Kamm, RD, Sample, M, Truskey, GA, Zartman, J, Dar, RD, Palacios, S, Wang, J, Tordoff, J, Montserrat, N, Bashir, R, Saif, MTA, Weiss, R, (2022). Principles for the design of multicellular engineered living systems Apl Bioengineering 6, 10903

Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell–cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the “black box” of living cells.

JTD Keywords: cell-fate specification, endothelial-cells, escherichia-coli, extracellular-matrix, gene-expression noise, nuclear hormone-receptors, pluripotent stem-cells, primitive endoderm, transcription factors, Artificial tissues, Assembly cells, Biological parts, Biological systems, Bioremediation, Blood-brain-barrier, Cell engineering, Cell/matrix communication, Design principles, Environmental technology, Functional modules, Fundamental design, Genetic circuits, Genetic engineering, Living machines, Living systems, Medical applications, Molecular biology, Synthetic biology


Kadkhodaie-Elyaderani, A, de Lama-Odría, MD, Rivas, M, Martínez-Rovira, I, Yousef, I, Puiggalí, J, del Valle, LJ, (2022). Medicated Scaffolds Prepared with Hydroxyapatite/Streptomycin Nanoparticles Encapsulated into Polylactide Microfibers International Journal Of Molecular Sciences 23, 1282

The preparation, characterization, and controlled release of hydroxyapatite (HAp) nanopar-ticles loaded with streptomycin (STR) was studied. These nanoparticles are highly appropriate for the treatment of bacterial infections and are also promising for the treatment of cancer cells. The analyses involved scanning electron microscopy, dynamic light scattering (DLS) and Z-potential measurements, as well as infrared spectroscopy and X-ray diffraction. Both amorphous (ACP) and crystalline (cHAp) hydroxyapatite nanoparticles were considered since they differ in their release behavior (faster and slower for amorphous and crystalline particles, respectively). The encapsulated nanoparticles were finally incorporated into biodegradable and biocompatible polylactide (PLA) scaf-folds. The STR load was carried out following different pathways during the synthesis/precipitation of the nanoparticles (i.e., nucleation steps) and also by simple adsorption once the nanoparticles were formed. The loaded nanoparticles were biocompatible according to the study of the cytotoxicity of extracts using different cell lines. FTIR microspectroscopy was also employed to evaluate the cytotoxic effect on cancer cell lines of nanoparticles internalized by endocytosis. The results were promising when amorphous nanoparticles were employed. The nanoparticles loaded with STR increased their size and changed their superficial negative charge to positive. The nanoparticles’ crystallinity decreased, with the consequence that their crystal sizes reduced, when STR was incorporated into their structure. STR maintained its antibacterial activity, although it was reduced during the adsorption into the nanoparticles formed. The STR release was faster from the amorphous ACP nanoparticles and slower from the crystalline cHAp nanoparticles. However, in both cases, the STR release was slower when incorporated in calcium and phosphate during the synthesis. The biocompatibility of these nanoparticles was assayed by two approximations. When extracts from the nanoparticles were evaluated in cultures of cell lines, no cytotoxic damage was observed at concen-trations of less than 10 mg/mL. This demonstrated their biocompatibility. Another experiment using FTIR microspectroscopy evaluated the cytotoxic effect of nanoparticles internalized by endocytosis in cancer cells. The results demonstrated slight damage to the biomacromolecules when the cells were treated with ACP nanoparticles. Both ACP and cHAp nanoparticles were efficiently encapsulated in PLA electrospun matrices, providing functionality and bioactive properties. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: antibiotics, antimicrobial activity, behavior, cytotoxicity, delivery, drug, drug delivery, hydroxyapatite nanoparticles, in-vitro, mechanisms, mitochondria, polylactide, release, streptomycin, Antimicrobial activity, Cancer stem-cells, Cytotoxicity, Drug delivery, Hydroxyapatite nanoparticles, Polylactide, Streptomycin


Brennan, MA, Monahan, DS, Brulin, B, Gallinetti, S, Humbert, P, Tringides, C, Canal, C, Ginebra, MP, Layrolle, P, (2021). Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects Acta Biomaterialia 135, 689-704

In contrast to sintered calcium phosphates (CaPs) commonly employed as scaffolds to deliver mesenchymal stromal cells (MSCs) targeting bone repair, low temperature setting conditions of calcium deficient hydroxyapatite (CDHA) yield biomimetic topology with high specific surface area. In this study, the healing capacity of CDHA administering MSCs to bone defects is evaluated for the first time and compared with sintered beta-tricalcium phosphate (β-TCP) constructs sharing the same interconnected macroporosity. Xeno-free expanded human bone marrow MSCs attached to the surface of the hydrophobic β-TCP constructs, while infiltrating the pores of the hydrophilic CDHA. Implantation of MSCs on CaPs for 8 weeks in calvaria defects of nude mice exhibited complete healing, with bone formation aligned along the periphery of β-TCP, and conversely distributed within the pores of CDHA. Human monocyte-osteoclast differentiation was inhibited in vitro by direct culture on CDHA compared to β-TCP biomaterials and indirectly by administration of MSC-conditioned media generated on CDHA, while MSCs increased osteoclastogenesis in both CaPs in vivo. MSC engraftment was significantly higher in CDHA constructs, and also correlated positively with bone in-growth in scaffolds. These findings demonstrate that biomimetic CDHA are favorable carriers for MSC therapies and should be explored further towards clinical bone regeneration strategies. Statement of significance: Delivery of mesenchymal stromal cells (MSCs) on calcium phosphate (CaP) biomaterials enhances reconstruction of bone defects. Traditional CaPs are produced at high temperature, but calcium deficient hydroxyapatite (CDHA) prepared at room temperature yields a surface structure more similar to native bone mineral. The objective of this study was to compare the capacity of biomimetic CDHA scaffolds with sintered β-TCP scaffolds for bone repair mediated by MSCs for the first time. In vitro, greater cell infiltration occurred in CDHA scaffolds and following 8 weeks in vivo, MSC engraftment was higher in CDHA compared to β-TCP, as was bone in-growth. These findings demonstrate the impact of material features such as surface structure, and highlight that CDHA should be explored towards clinical bone regeneration strategies.

JTD Keywords: beta-tricalcium phosphate, bone regeneration, calcium deficient hydroxyapatite, differentiation, engraftment, human bone marrow mesenchymal stromal cells, hydroxyapatite scaffolds, in-vitro, inhibition, osteogenesis, osteoinduction, stem-cells, surface-topography, tissue, Animals, Beta-tricalcium phosphate, Biomimetics, Bone regeneration, Calcium deficient hydroxyapatite, Calcium phosphate, Calcium phosphates, Cell differentiation, Engraftment, Human bone marrow mesenchymal stromal cells, Humans, Mesenchymal stem cells, Mice, Mice, nude, Osteogenesis, Tissue scaffolds


Rubí-Sans, G, Nyga, A, Rebollo, E, Pérez-Amodio, S, Otero, J, Navajas, D, Mateos-Timoneda, MA, Engel, E, (2021). Development of Cell-Derived Matrices for Three-Dimensional in Vitro Cancer Cell Models Acs Applied Materials & Interfaces 13, 44108-44123

Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.

JTD Keywords: 3d cell-derived matrices, adipose mesenchymal stem cells, collagen matrix, colorectal adenocarcinoma, cytotoxicity assay, deposition, expansion, extracellular microenvironment, extracellular-matrix, fibronectin, growth, macromolecular crowders, microcarriers, scaffolds, tissue, 3d cell-derived matrices, Adipose mesenchymal stem cells, Cytotoxicity assay, Extracellular microenvironment, Macromolecular crowders, Mesenchymal stem-cells, Microcarriers


Villasante, A, Robinson, STT, Cohen, ARR, Lock, R, Guo, XE, Vunjak-Novakovic, G, (2021). Human Serum Enhances Biomimicry of Engineered Tissue Models of Bone and Cancer Frontiers In Bioengineering And Biotechnology 9, 658472

For decades, fetal bovine serum (FBS) has been used routinely for culturing many cell types, based on its empirically demonstrated effects on cell growth, and the lack of suitable non-xenogeneic alternatives. The FBS-based culture media do not represent the human physiological conditions, and can compromise biomimicry of preclinical models. To recapitulate in vitro the features of human bone and bone cancer, we investigated the effects of human serum and human platelet lysate on modeling osteogenesis, osteoclastogenesis, and bone cancer in two-dimensional (2D) and three-dimensional (3D) settings. For monitoring tumor growth within tissue-engineered bone in a non-destructive fashion, we generated cancer cell lines expressing and secreting luciferase. Culture media containing human serum enhanced osteogenesis and osteoclasts differentiation, and provided a more realistic in vitro mimic of human cancer cell proliferation. When human serum was used for building 3D engineered bone, the tissue recapitulated bone homeostasis and response to bisphosphonates observed in native bone. We found disparities in cell behavior and drug responses between the metastatic and primary cancer cells cultured in the bone niche, with the effectiveness of bisphosphonates observed only in metastatic models. Overall, these data support the utility of human serum for bioengineering of bone and bone cancers.

JTD Keywords: 3d cancer models, 3rs, alpha tnf-alpha, culture, cypridina luciferase, ewings-sarcoma, ewing’s sarcoma, human platelet lysate, human serum, human tumor, in-vitro, osteogenic differentiation, stem-cells, zoledronic acid, 3d cancer models, 3rs, Cypridina luciferase, Ewing's sarcoma, Ewing’s sarcoma, Fetal bovine serum, Human serum


Falcones, B, Sanz-Fraile, H, Marhuenda, E, Mendizábal, I, Cabrera-Aguilera, I, Malandain, N, Uriarte, JJ, Almendros, I, Navajas, D, Weiss, DJ, Farré, R, Otero, J, (2021). Bioprintable lung extracellular matrix hydrogel scaffolds for 3d culture of mesenchymal stromal cells Polymers 13, 2350

Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.

JTD Keywords: 3d bioprinting, acute lung injury, adhesion, collagen, differentiation, dimension, elastic properties, extracellular matrix, hydrogels, in-vitro, mechanical-properties, mesenchymal stromal cells, microenvironment, potentiate, tissue engineering, 3d bioprinting, Acute lung injury, Extracellular matrix, Hydrogels, Mesenchymal stromal cells, Stem-cells, Tissue engineering


Pérez-González, C, Ceada, G, Greco, F, Matejcic, M, Gómez-González, M, Castro, N, Menendez, A, Kale, S, Krndija, D, Clark, AG, Gannavarapu, VR, Alvarez-Varela, A, Roca-Cusachs, P, Batlle, E, Vignjevic, DM, Arroyo, M, Trepat, X, (2021). Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration Nature Cell Biology 23, 745-757

Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium. Perez-Gonzalez et al. explore the mechanical properties of intestinal organoids, and report the existence of distinct mechanical domains and that cells are pulled out of the central crypt along a gradient of increasing tension.

JTD Keywords: Forces, Growth, Gut, Monolayers, Morphogenesis, Reveal, Stem-cells, Tension


Blanco-Fernandez, B, Castano, O, Mateos-Timoneda, MA, Engel, E, Perez-Amodio, S, (2021). Nanotechnology Approaches in Chronic Wound Healing Advances In Wound Care 10, 234-256

Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.

JTD Keywords: chronic, diabetes, liposomes, nanofibers, nanoparticles, Chronic, Chronic wound, Diabetes, Diabetic wound, Diabetic-rats, Dressings, Drug mechanism, Extracellular-matrix, Growth-factor, Human, In-vitro, Liposome, Liposomes, Mesenchymal stem-cells, Metal nanoparticle, Nanofiber, Nanofibers, Nanofibrous scaffolds, Nanoparticles, Nanotechnology, Nonhuman, Polyester, Polymer, Polysaccharide, Priority journal, Protein, Review, Self assembled protein nanoparticle, Silk fibroin, Skin wounds, Wound healing, Wound healing promoting agent


Lidón, L, Llaó-Hierro, L, Nuvolone, M, Aguzzi, A, Avila, J, Ferrer, I, del Río, JA, Gavín, R, (2021). Tau exon 10 inclusion by prpc through downregulating gsk3? activity International Journal Of Molecular Sciences 22, 5370

Tau protein is largely responsible for tauopathies, including Alzheimer’s disease (AD), where it accumulates in the brain as insoluble aggregates. Tau mRNA is regulated by alternative splicing, and inclusion or exclusion of exon 10 gives rise to the 3R and 4R isoforms respectively, whose balance is physiologically regulated. In this sense, one of the several factors that regulate alternative splicing of tau is GSK3?, whose activity is inhibited by the cellular prion protein (PrPC), which has different physiological functions in neuroprotection and neuronal differentiation. Moreover, a relationship between PrPC and tau expression levels has been reported during AD evolution. For this reason, in this study we aimed to analyze the role of PrPC and the implication of GSK3? in the regulation of tau exon 10 alternative splicing. We used AD human samples and mouse models of PrPC ablation and tau overexpression. In addition, we used primary neuronal cultures to develop functional studies. Our results revealed a paralleled association between PrPC expression and tau 4R isoforms in all models analyzed. In this sense, reduction or ablation of PrPC levels induces an increase in tau 3R/4R balance. More relevantly, our data points to GSK3? activity downstream from PrPC in this phenomenon. Our results indicate that PrPC plays a role in tau exon 10 inclusion through the inhibitory capacity of GSK3?. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: alternative splicing, alzheimer's disease, alzheimers-disease, alzheimer’s disease, amyloid-beta, cellular prion protein, frontotemporal dementia, glycogen-synthase kinase-3, gsk3 beta, gsk3?, gsk3β, messenger-rna, microtubule-associated protein tau, neurofibrillary tangles, progressive supranuclear palsy, promotes neuronal differentiation, stem-cells, tauopathies, Alternative splicing, Alzheimer’s disease, Cellular prion protein, Gsk3?, Microtubule-associated protein tau, Tauopathies


Garreta, E, Kamm, RD, Lopes, SMCD, Lancaster, MA, Weiss, R, Trepat, X, Hyun, I, Montserrat, N, (2021). Rethinking organoid technology through bioengineering Nature Materials 20, 145-155

In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine. This Review provides an overview of bioengineering technologies that can be harnessed to facilitate the culture, self-organization and functionality of human pluripotent stem cell-derived organoids.

JTD Keywords: Differentiation, Embryonic-tissues, Extracellular-matrix, In-vitro, Kidney organoids, Model, Neural-tube, Pluripotent stem-cells, Reconstitution, Self-organization