DONATE

Publications

by Keyword: Protein-protein

Roca, C, Avalos-Padilla, Y, Prieto-Simon, B, Iglesias, V, Ramirez, M, Imperial, S, Fernandez-Busquets, X, (2022). Selection of an Aptamer against the Enzyme 1-deoxy-D-xylulose-5-phosphate Reductoisomerase from Plasmodium falciparum Pharmaceutics 14, 2515

The methyl erythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential for malaria parasites and also for several human pathogenic bacteria, thus representing an interesting target for future antimalarials and antibiotics and for diagnostic strategies. We have developed a DNA aptamer (D10) against Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of this metabolic route. D10 binds in vitro to recombinant DXR from P. falciparum and Escherichia coli, showing at 10 mu M a ca. 50% inhibition of the bacterial enzyme. In silico docking analysis indicates that D10 associates with DXR in solvent-exposed regions outside the active center pocket. According to fluorescence confocal microscopy data, this aptamer specifically targets in P. falciparum in vitro cultures the apicoplast organelle where the MEP pathway is localized and is, therefore, a highly specific marker of red blood cells parasitized by Plasmodium vs. naive erythrocytes. D10 is also selective for the detection of MEP+ bacteria (e.g., E. coli and Pseudomonas aeruginosa) vs. those lacking DXR (e.g., Enterococcus faecalis). Based on these results, we discuss the potential of DNA aptamers in the development of ligands that can outcompete the performance of the well-established antibody technology for future therapeutic and diagnostic approaches.

JTD Keywords: 1-deoxy-d-xylulose-5-phosphate reductoisomerase, dna aptamers, plasmodium, 1-deoxy-d-xylulose-5-phosphate reductoisomerase, Apicoplast, Dna aptamers, Drug targets, Evolution, Inhibitors, Isoprenoid biosynthesis, Malaria, Methyl erythritol phosphate pathway, Pathway, Plasmodium, Protein-protein, Web server


Molina-Fernandez, R, Picon-Pages, P, Barranco-Almohalla, A, Crepin, G, Herrera-Fernandez, V, Garcia-Elias, A, Fanlo-Ucar, H, Fernandez-Busquets, X, Garcia-Ojalvo, J, Oliva, B, Munoz, FJ, (2022). Differential regulation of insulin signalling by monomeric and oligomeric amyloid beta-peptide Brain Commun 4, fcac243

Alzheimer's disease and Type 2 diabetes are pathological processes associated to ageing. Moreover, there are evidences supporting a mechanistic link between Alzheimer's disease and insulin resistance (one of the first hallmarks of Type 2 diabetes). Regarding Alzheimer's disease, amyloid beta-peptide aggregation into beta-sheets is the main hallmark of Alzheimer's disease. At monomeric state, amyloid beta-peptide is not toxic but its function in brain, if any, is unknown. Here we show, by in silico study, that monomeric amyloid beta-peptide 1-40 shares the tertiary structure with insulin and is thereby able to bind and activate insulin receptor. We validated this prediction experimentally by treating human neuroblastoma cells with increasing concentrations of monomeric amyloid. beta-peptide 1-40. Our results confirm that monomeric amyloid beta-peptide 1-40 activates insulin receptor autophosphorylation, triggering downstream enzyme phosphorylarions and the glucose Transporter 4 translocation to the membrane. On the other hand, neuronal insulin resistance is known to be associated to Alzheimer's disease since early stages. We thus modelled the docking of oligomeric amyloid peptide 1-40 to insulin receptor. We found that oligomeric amyloid. beta-peptide 1-40 blocks insulin receptor, impairing its activation. It was confirmed in vitro by observing the lack of insulin receptor autophosphorylation, and also the impairment of insulin-induced intracellular enzyme activations and the glucose Transporter 4 translocation to the membrane. By biological system analysis, we have carried out a mathematical model recapitulating the process that turns amyloid beta-peptide binding to insulin receptor from the physiological to the pathophysiological regime. Our results suggest that monomeric amyloid beta-peptide 1-40 contributes to mimic insulin effects in the brain, which could be good when neurons have an extra requirement of energy beside the well-known protective effects on insulin intracellular signalling, while its accumulation and subsequent oligomerization blocks the insulin receptor producing insulin resistance and compromising neuronal metabolism and protective pathways.

JTD Keywords: akt, alzheimer’s disease, amyloid β-peptide, insulin, A-beta, Aggregation, Akt, Alzheimer's disease, Alzheimers-disease, Amyloid beta-peptide, Brain, Design, Insulin, Insulin resistance, Precursor protein, Protein-protein docking, Receptor, Resistance, Site


Nevola, L., Martín-Quirós, A., Eckelt, K., Camarero, N., Tosi, S., Llobet, A., Giralt, E., Gorostiza, P., (2013). Light-regulated stapled peptides to inhibit protein-protein interactions involved in clathrin-mediated endocytosis Angewandte Chemie - International Edition 52, (30), 7704-7708

Control of membrane traffic: Photoswitchable inhibitors of protein-protein interactions were applied to photoregulate clathrin-mediated endocytosis (CME) in living cells. Traffic light (TL) peptides acting as "stop" and "go" signals for membrane traffic can be used to dissect the role of CME in receptor internalization and in cell growth, division, and differentiation.

JTD Keywords: Clathrin-mediated endocytosis, Optopharmacology, Peptides, Photoswitches, Protein-protein interactions


Gimenez-Oya, V., Villacanas, O., Fernàndez-Busquets, X., Rubio-Martinez, J., Imperial, S., (2009). Mimicking direct protein-protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach Journal of Molecular Modeling , 15, (8), 997-1007

The 2C-methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate, which are the precursors of isoprenoids, is present in plants, in the malaria parasite Plasmodium falciparum and in most eubacteria, including pathogenic agents. However, the MEP pathway is absent from fungi and animals, which have exclusively the mevalonic acid pathway. Given the characteristics of the MEP pathway, its enzymes represent potential targets for the generation of selective antibacterial, antimalarial and herbicidal molecules. We have focussed on the enzyme 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol kinase (CMK), which catalyses the fourth reaction step of the MEP pathway. A molecular dynamics simulation was carried out on the CMK dimer complex, and protein-protein interactions analysed, considering also water-mediated interactions between monomers. In order to find small molecules that bind to CMK and disrupt dimer formation, interactions observed in the dynamics trajectory were used to model a pharmacophore used in database searches. Using an intensity-fading matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry approach, one compound was found to interact with CMK. The data presented here indicate that a virtual screening approach can be used to identify candidate molecules that disrupt the CMK-CMK complex. This strategy can contribute to speeding up the discovery of new antimalarial, antibacterial, and herbicidal compounds.

JTD Keywords: Solvent-mediated interactions, Protein-protein interactions, Molecular dynamics, Drug design, Intensisty-fading MALDI-TOF mass spectrometry