by Keyword: Molecular dynamics
Munoz-Galan, Helena, Marzoa, Antonio, Bertran, Oscar, Barbera, Francesc, Jimenez-Pique, Emilio, Ahumada, Oscar, Perez-Madrigal, Maria M, Aleman, Carlos, (2024). Optomechanical, Computer Simulation, and Nanoindentation Studies on Tunable Click Hydrogels: Microscopic Insights Acs Applied Polymer Materials 6, 12176-12185
The properties of thiol-yne click polyethylene glycol (PEG)-based hydrogels, which can be tuned by controlling the cis and trans stereochemistry through the gelation conditions, have been investigated at the micro- and nanoscale using optomechanics, atomistic molecular dynamics (MD) simulations, and nanoindentation. Optomechanical measurements on thin films and computer MD simulations have shown that the trans hydrogel is less porous than the cis hydrogel, which is in agreement with both the swelling behavior and the pore size determined for macroscopic 3D hydrogel samples. On the other hand, results from optomechanical measurements using both static and dynamic modes, as well as nanoindentation profiles obtained for thin films adhered to glass substrates, reflect that the trans hydrogel is stiffer than the cis one. Overall, despite the few drawbacks of the techniques employed in this work, from a qualitative point of view, the properties of click PEG-based hydrogels at the micro- and nanoscale follow a behavior similar to that found for 3D macroscopic samples. Considering the wide range of mechanical properties of human tissues (e.g., Young's modulus ranges from 0.1 kPa to many tens of MPa) and the extensive use of hydrogels in applications such as tissue regeneration and tissue-specific drug delivery, the availability of a hydrogel with tunable properties opens the door to targeted biomedicine.
JTD Keywords: Algorithm, Elastic modulu, Ewal, Injectable hydrogels, Molecular dynamics, Molecular-dynamics, Nanoindentation, Optomechanical sensors, Polyethylene glycol hydrogels, Surface stress, Thiol-yneclick hydrogels
Tampieri, F, Espona-Noguera, A, Labay, C, Ginebra, MP, Yusupov, M, Bogaerts, A, Canal, C, (2023). Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Biomaterials Science 11, 4845-4858
The mutual interaction between reactive species generated by non-thermal plasma and biopolymers in solution causes oxidative modifications that can have an impact in biomedical applications.
JTD Keywords: atmospheric plasma, cellulose, dftb3, gas, oxidation, parameterization, simulations, water, Biopolymers, Hydrogen peroxide, Molecular dynamics simulation, Molecular-dynamics, Nitrites, Reactive oxygen species
Munoz-Galan, H, Molina, BG, Bertran, O, Perez-Madrigal, MM, Aleman, C, (2022). Combining rapid and sustained insulin release from conducting hydrogels for glycemic control br European Polymer Journal 181, 111670
Innovative insulin delivery systems contemplate combining multi-pharmacokinetic profiles for glycemic control. Two device configurations have been designed for the controlled release of insulin using the same chemical compounds. The first insulin delivery system, which displays a rapid release response that, in addition, is enhanced on a short time scale by electrical stimulation, consists on an insulin layer sandwiched between a conducting poly(3,4-ethylenedioxythiophene) (PEDOT) film and a poly-gamma-glutamic acid (gamma-PGA) hydrogel. The second system is constituted by gamma-PGA hydrogel loaded with insulin and PEDOT nanoparticles by in situ gelation. In this case, the insulin release, which only starts after the degradation of the hydrogel over time (i.e. on a long time scale), is slow and sustained. The combination of an on-demand and fast release profile with a sustained and slow profile, which act on different time scales, would result in a very efficient regulation of diabetes therapy in comparison to current systems, allowing to control both fast and sustained glycemic events. Considering that the two systems developed in this work are based on the same chemical components, future work will be focused on the combination of the two kinetic profiles by re-engineering a unique insulin release device using gamma-PGA, PEDOT and insulin.
JTD Keywords: Conducting polymer, Constant, Diabetes, Diabetes-mellitus, Drug-delivery, Electrodes, Electrostimulation, Glucose-responsive hydrogels, Hydrogel, Molecular dynamics, Molecular-dynamics, Nanogels, Nanoparticles, Poly(3,4-ethylenedioxythiophene), Risk
Bertran, O, Martí, D, Torras, J, Turon, P, Alemán, C, (2022). Computer simulations on oxidative stress-induced reactions in SARS-CoV-2 spike glycoprotein: a multi-scale approach Molecular Diversity 26, 3143-3155
Abstract Oxidative stress, which occurs when an organism is exposed to an adverse stimulus that results in a misbalance of antioxidant and pro-oxidants species, is the common denominator of diseases considered as a risk factor for SARS-CoV-2 lethality. Indeed, reactive oxygen species caused by oxidative stress have been related to many virus pathogenicity. In this work, simulations have been performed on the receptor binding domain of SARS-CoV-2 spike glycoprotein to study what residues are more susceptible to be attacked by ·OH, which is one of the most reactive radicals associated to oxidative stress. The results indicate that isoleucine (ILE) probably plays a crucial role in modification processes driven by radicals. Accordingly, QM/MM-MD simulations have been conducted to study both the ·OH-mediated hydrogen abstraction of ILE residues and the induced modification of the resulting ILE radical through hydroxylation or nitrosylation reactions. All in all, in silico studies show the importance of the chemical environment triggered by oxidative stress on the modifications of the virus, which is expected to help for foreseeing the identification or development of antioxidants as therapeutic drugs. Graphic abstract
JTD Keywords: atom abstraction, damage, density functionals, hydrogen abstraction, isoleucine, molecular dynamics, pathogenesis, protein, reactive oxygen species, receptor binding domain, residues, spike protein, Amino-acids, Hydrogen abstraction, Isoleucine, Molecular dynamics, Reactive oxygen species, Receptor binding domain, Spike protein
Tuveri, GM, Ceccarelli, M, Pira, A, Bodrenko, IV, (2022). The Optimal Permeation of Cyclic Boronates to Cross the Outer Membrane via the Porin Pathway Antibiotics 11, 840
We investigated the diffusion of three cyclic boronates formulated as beta-lactamase inhibitors through the porin OmpF to evaluate their potential to cross OM via the porin pathway. The three nonbeta-lactam molecules diffuse through the porin eyelet region with the same mechanism observed for beta-lactam molecules and diazobicyclooctan derivatives, with the electric dipole moment aligned with the transversal electric field. In particular, the BOH group can interact with both the basic ladder and the acidic loop L3, which is characteristic of the size-constricted region of this class of porins. On one hand, we confirm that the transport of small molecules through enterobacter porins has a common general mechanism; on the other, the class of cyclic boronate molecules does not seem to have particular difficulties in diffusing through enterobacter porins, thus representing a good scaffold for new anti-infectives targeting Gram-negative bacteria research.
JTD Keywords: beta-lactamase inhibitors, cyclic boronates, diffusion current, metadynamics, molecular dynamics simulations, permeation, Antibiotics, Beta-lactamase inhibitors, Cyclic boronates, Diffusion, Diffusion current, Discovery, Electric-field, Metadynamics, Molecular dynamics simulations, Molecular-dynamics simulations, Nanopores, Permeability, Permeation, Porins, Rules, Translocation
Rosales-Rojas, R, Zuniga-Bustos, M, Salas-Sepulveda, F, Galaz-Araya, C, Zamora, RA, Poblete, H, (2022). Self-Organization Dynamics of Collagen-like Peptides Crosslinking Is Driven by Rose-Bengal-Mediated Electrostatic Bridges Pharmaceutics 14, 1148
The present work focuses on the computational study of the structural micro-organization of hydrogels based on collagen-like peptides (CLPs) in complex with Rose Bengal (RB). In previous studies, these hydrogels computationally and experimentally demonstrated that when RB was activated by green light, it could generate forms of stable crosslinked structures capable of regenerating biological tissues such as the skin and cornea. Here, we focus on the structural and atomic interactions of two collagen-like peptides (collagen-like peptide I (CLPI), and collagen-like peptide II, (CLPII)) in the presence and absence of RB, highlighting the acquired three-dimensional organization and going deep into the stabilization effect caused by the dye. Our results suggest that the dye could generate a ternary ground-state complex between collagen-like peptide fibers, specifically with positively charged amino acids (Lys in CLPI and Arg in CLPII), thus stabilizing ordered three-dimensional structures. The discoveries generated in this study provide the structural and atomic bases for the subsequent rational development of new synthetic peptides with improved characteristics for applications in the regeneration of biological tissues during photochemical tissue bonding therapies.
JTD Keywords: collagen-like peptide, crosslinking, molecular dynamics, qm/mm simulations, rose bengal, Anastomosis, Collagen-like peptide, Crosslinking, Green light, Mm simulations, Molecular dynamics, Molecular-dynamics, Photochemical tissue bonding therapies, Qm, Rose bengal
Marti, D, Martin-Martinez, E, Torras, J, Betran, O, Turon, P, Aleman, C, (2022). In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold Colloids And Surfaces B-Biointerfaces 213, 112400
The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors. © 2022 The Authors
JTD Keywords: amorphous silica, antibody immobilization, enzyme, gol d, gold, immobilization, immunosensor, molecu l a r dynamics, molecular dynamics, protein adsorption, sars-cov-2 immunosensor, simulations, spike protein, surface interactions, target, vaccine, Amorphous silica, Antibodies, Antibody engineering, Antibody immobilization, Antibody structure, Article, Chemical detection, Computer model, Controlled study, Dihedral angle, Gold, In-silico, Molecular dynamics, Molecular levels, Molecular-dynamics, Nonhuman, Property, Sars, Sars-cov-2 immunosensor, Severe acute respiratory syndrome coronavirus 2, Silica, Silico studies, Silicon dioxide, Solid substrates, Structure analysis, Substrate chemistry, Substrates, Van der waals forces, Virus detection
Martí, D, Alemán, C, Ainsley, J, Ahumada, O, Torras, J, (2022). IgG1-b12–HIV-gp120 Interface in Solution: A Computational Study Journal Of Chemical Information And Modeling 62, 359-371
The use of broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) has been shown to be a promising therapeutic modality in the prevention of HIV infection. Understanding the b12-gp120 binding mechanism under physiological conditions may assist the development of more broadly effective antibodies. In this work, the main conformations and interactions between the receptor-binding domain (RBD) of spike glycoprotein gp120 of HIV-1 and the IgG1-b12 mAb are studied. Accelerated molecular dynamics (aMD) and ab initio hybrid molecular dynamics have been combined to determine the most persistent interactions between the most populated conformations of the antibody-antigen complex under physiological conditions. The results show the most persistent receptor-binding mapping in the conformations of the antibody-antigen interface in solution. The binding-free-energy decomposition reveals a small enhancement in the contribution played by the CDR-H3 region to the b12-gp120 interface compared to the crystal structure.
JTD Keywords: antibody, complex, functionals, gp120 envelope glycoprotein, hiv, immunodeficiency-virus, noncovalent interactions, simulations, software integration, Ab initio, Accelerated molecular dynamics, Accelerated molecular-dynamics, Antibodies, Antigens, Binding energy, Binding mechanisms, Computational studies, Crystal structure, Diseases, Free energy, Hiv infection, Human immunodeficiency virus, Molecular dynamics, Neutralizing antibodies, Physiological condition, Physiology, Receptor-binding domains, Therapeutic modality, Viruses
Marti, D, Martin-Martinez, E, Torras, J, Bertran, O, Turon, P, Aleman, C, (2021). In silico antibody engineering for SARS-CoV-2 detection Computational And Structural Biotechnology Journal 19, 5525-5534
Engineered immunoglobulin-G molecules (IgGs) are of wide interest for the development of detection elements in protein-based biosensors with clinical applications. The strategy usually employed for the de novo design of such engineered IgGs consists on merging fragments of the three-dimensional structure of a native IgG, which is immobilized on the biosensor surface, and of an antibody with an exquisite target specificity and affinity. In this work conventional and accelerated classical molecular dynamics (cMD and aMD, respectively) simulations have been used to propose two IgG-like antibodies for COVID-19 detection. More specifically, the crystal structure of the IgG1 B12 antibody, which inactivates the human immunodeficiency virus-1, has been merged with the structure of the antibody CR3022 Fab tightly bounded to SARS-CoV-2 receptor-binding domain (RBD) and the structure of the 5309 antibody Fab fragment complexed with SARS-CoV-2 RBD. The two constructed antibodies, named IgG1-CR3022 and IgG1-S309, respectively, have been immobilized on a stable gold surface through a linker. Analyses of the influence of both the merging strategy and the substrate on the stability of the two constructs indicate that the IgG1-S309 antibody better preserves the neutralizing structure than the IgG1-CR3022 one. Overall, results indicate that the IgG1-S309 is appropriated for the generation of antibody based sensors for COVID-19 diagnosis. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
JTD Keywords: cr3022, igg1, molecular engineering, s309, Antibodies, Antibody engineering, Biosensors, Chemical detection, Clinical application, Cov, Cr3022, Crystal structure, Design, Diseases, Gold nanoparticles, Igg1, Igg1 antibody, Immobilization, Immunoglobulin g, Immunosensor, In-silico, Merging, Molecular dynamics, Molecular engineering, Orientation, Protein-based biosensors, Receptor-binding domains, S309, Sars, Sensor, Spike protein, Target, Vaccine, Viruses
Bertran, O., Saldías, C., Díaz, D. D., Alemán, C., (2020). Molecular dynamics simulations on self-healing behavior of ionene polymer-based nanostructured hydrogels Polymer 211, 123072
The microscopic mechanism accounting for the self-healing attribute of aromatic ionene-forming hydrogels derived from 1,4-diazabicyclo [2.2.2]octane (DABCO) and N,N’-(x-phenylene)dibenzamide (x = ortho-/meta-/para-) is unknown. Interestingly, the self-healing property of such DABCO-containing hydrogels is largely dependent on the polymer topology, the ortho ionene being the only self-healable without adding oppositely charged species. In this work, Molecular Dynamics (MD) simulations have been conducted to evaluate the influence of the topology on ionene···ionene and ionene··water interactions, as well as their effect on the self-healing behavior. For this purpose, destabilized and structurally damaged models were produced for ionene hydrogels with ortho, meta and para topologies and used as starting geometries for simulations. These models were allowed to evolve without any restriction during MD production runs and, subsequently, the temporal evolution of ionene···ionene and water···ionene interactions was examined. Analysis of the results indicated that the ortho-isomer rapidly forms unique interactions that are not detected for other two isomers. Thus, in addition to the interactions also identified for the meta-and para-ionenes, the ortho-isomer exhibits the formation of strong intermolecular three-centered (N–)H⋯O (=C)⋯H (–N) hydrogen bonds, intramolecular planar sandwich π-π stacking interactions and Cl−···N+ electrostatic interactions. Furthermore, the amount of intermolecular π-π stacking interactions and the strength of water···polymer interaction are also influenced by the topology, favoring the stabilization of the ortho-ionene reconstituted hydrogels. Overall, the arrangement of the functional groups in the ortho topology favors the formation of more types of ionene···ionene interactions, as well as stronger interactions, than in the meta and para topologies.
JTD Keywords: DABCO, Econstituted hydrogels, Molecular dynamics, Polyelectrolyte hydrogels, Self-healing mechanism
A. R. Dalton, J., Lans, I., Rovira, X., Malhaire, F., Gómez-Santacana, X., Pittolo, S., Gorostiza, P., Llebaria, A., Goudet, C., Pin, J-P., Giraldo, J., (2016). Shining light on an mGlu5 photoswitchable NAM: A theoretical perspective Current Neuropharmacology , 14, (5), 441-454
Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality.
JTD Keywords: Allosteric modulation, Docking, Metabotropic glutamate receptor, Molecular dynamics, Mutation, Protein structure, Transmembrane domain
Valle-Delgado, J. J., Liepina, I., Lapidus, D., Sabaté, R., Ventura, S., Samitier, J., Fernàndez-Busquets, X., (2012). Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy Soft Matter 8, (4), 1234-1242
The self-assembly of peptides and proteins into amyloid fibrils of nanometric thickness and up to several micrometres in length, a phenomenon widely observed in biological systems, has recently aroused a growing interest in nanotechnology and nanomedicine. Here we have applied atomic force microscopy and single molecule force spectroscopy to study the amyloidogenesis of a peptide derived from human amylin and of its reverse sequence. The spontaneous formation of protofibrils and their orientation along well-defined directions on graphite and DMSO-coated graphite substrates make the studied peptides interesting candidates for nanotechnological applications. The measured binding forces between peptides correlate with the number of hydrogen bonds between individual peptides inside the fibril structure according to molecular dynamics simulations.
JTD Keywords: Amyloid fibril, Amyloidogenesis, Binding forces, Fibril structure, Graphite substrate, Molecular dynamics simulations, Nanometrics, Protofibrils, Single molecule force spectroscopy, Spontaneous formation, Atomic force microscopy, Atomic spectroscopy, Graphite, Hydrogen bonds, Medical nanotechnology, Molecular dynamics, Molecular physics, Self assembly, Thickness measurement, Peptides
Gimenez-Oya, V., Villacanas, O., Fernàndez-Busquets, X., Rubio-Martinez, J., Imperial, S., (2009). Mimicking direct protein-protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach Journal of Molecular Modeling , 15, (8), 997-1007
The 2C-methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate, which are the precursors of isoprenoids, is present in plants, in the malaria parasite Plasmodium falciparum and in most eubacteria, including pathogenic agents. However, the MEP pathway is absent from fungi and animals, which have exclusively the mevalonic acid pathway. Given the characteristics of the MEP pathway, its enzymes represent potential targets for the generation of selective antibacterial, antimalarial and herbicidal molecules. We have focussed on the enzyme 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol kinase (CMK), which catalyses the fourth reaction step of the MEP pathway. A molecular dynamics simulation was carried out on the CMK dimer complex, and protein-protein interactions analysed, considering also water-mediated interactions between monomers. In order to find small molecules that bind to CMK and disrupt dimer formation, interactions observed in the dynamics trajectory were used to model a pharmacophore used in database searches. Using an intensity-fading matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry approach, one compound was found to interact with CMK. The data presented here indicate that a virtual screening approach can be used to identify candidate molecules that disrupt the CMK-CMK complex. This strategy can contribute to speeding up the discovery of new antimalarial, antibacterial, and herbicidal compounds.
JTD Keywords: Solvent-mediated interactions, Protein-protein interactions, Molecular dynamics, Drug design, Intensisty-fading MALDI-TOF mass spectrometry