by Keyword: Respiratory system

Arboleda A, Amado L, Rodriguez J, Naranjo F, Giraldo BF, (2021). A new protocol to compare successful versus failed patients using the electromyographic diaphragm signal in extubation process Conference Proceedings : ... Annual International Conference Of The Ieee Engineering In Medicine And Biology Society. Ieee Engineering In Medicine And Biology Society. Conference , 5646-5649

In clinical practice, when a patient is undergoing mechanical ventilation, it is important to identify the optimal moment for extubation, minimizing the risk of failure. However, this prediction remains a challenge in the clinical process. In this work, we propose a new protocol to study the extubation process, including the electromyographic diaphragm signal (diaEMG) recorded through 5-channels with surface electrodes around the diaphragm muscle. First channel corresponds to the electrode on the right. A total of 40 patients in process of withdrawal of mechanical ventilation, undergoing spontaneous breathing tests (SBT), were studied. According to the outcome of the SBT, the patients were classified into two groups: successful (SG: 19 patients) and failure (FG: 21 patients) groups. Parameters extracted from the envelope of each channel of diaEMG in time and frequency domain were studied. After analyzing all channels, the second presented maximum differences when comparing the two groups of patients, with parameters related to root mean square (p = 0.005), moving average (p = 0.001), and upward slope (p = 0.017). The third channel also presented maximum differences in parameters as the time between maximum peak (p = 0.004), and the skewness (p = 0.027). These results suggest that diaphragm EMG signal could contribute to increase the knowledge of the behaviour of respiratory system in these patients and improve the extubation process.Clinical Relevance - This establishes the characterization of success and failure patients in the extubation process. © 2021 IEEE.

JTD Keywords: classification, recognition, Airway extubation, Artificial ventilation, Clinical practices, Clinical process, Diaphragm, Diaphragm muscle, Diaphragms, Electrodes, Electromyographic, Extubation, Frequency domain analysis, Human, Humans, Maximum differences, Mechanical ventilation, New protocol, Respiration, artificial, Respiratory system, Risk of failure, Spontaneous breathing, Surface electrode, Surface emg signals, Thorax, Ventilation, Ventilator weaning

Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Study of the oscillatory breathing pattern in elderly patients Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 5228-5231

Some of the most common clinical problems in elderly patients are related to diseases of the cardiac and respiratory systems. Elderly patients often have altered breathing patterns, such as periodic breathing (PB) and Cheyne-Stokes respiration (CSR), which may coincide with chronic heart failure. In this study, we used the envelope of the respiratory flow signal to characterize respiratory patterns in elderly patients. To study different breathing patterns in the same patient, the signals were segmented into windows of 5 min. In oscillatory breathing patterns, frequency and time-frequency parameters that characterize the discriminant band were evaluated to identify periodic and non-periodic breathing (PB and nPB). In order to evaluate the accuracy of this characterization, we used a feature selection process, followed by linear discriminant analysis. 22 elderly patients (7 patients with PB and 15 with nPB pattern) were studied. The following classification problems were analyzed: patients with either PB (with and without apnea) or nPB patterns, and patients with CSR versus PB, CSR versus nPB and PB versus nPB patterns. The results showed 81.8% accuracy in the comparisons of nPB and PB patients, using the power of the modulation peak. For the segmented signal, the power of the modulation peak, the frequency variability and the interquartile ranges provided the best results with 84.8% accuracy, for classifying nPB and PB patients.

JTD Keywords: cardiovascular system, diseases, feature extraction, geriatrics, medical signal processing, oscillations, pneumodynamics, signal classification, time-frequency analysis, Cheyne-Stokes respiration, apnea, cardiac systems, chronic heart failure, classification problems, discriminant band, diseases, elderly patients, feature selection process, frequency variability, interquartile ranges, linear discriminant analysis, nonperiodic breathing, oscillatory breathing pattern, periodic breathing, respiratory How signal, respiratory systems, signal segmentation, time 5 min, time-frequency parameters, Accuracy, Aging, Frequency modulation, Heart, Senior citizens, Time-frequency analysis