by Keyword: SECM

Deng, LL, Olea, AR, Ortiz-Perez, A, Sun, BB, Wang, JH, Pujals, S, Palmans, ARA, Albertazzi, L, (2024). Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device Small Methods , e2301072

The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.© 2024 The Authors. Small Methods published by Wiley-VCH GmbH.

JTD Keywords: 3d cancer cell uptake, Cancer cells, Cell culture, Cell uptake, Cellular uptake, Diseases, Ecm penetration, Extracellular matrices, Extracellular matrix penetration, Functional polymers, Hydrogen bonds, Medical applications, Microfluidics, Microstructure, Nanoparticles, Polymeric nanoparticles, Scpns, Single chains, Single-chain polymeric nanoparticle, Stability, Tumor-on-a-chip, Tumors

Levato, R., Planell, J. A., Mateos-Timoneda, M. A., Engel, E., (2015). Role of ECM/peptide coatings on SDF-1α triggered mesenchymal stromal cell migration from microcarriers for cell therapy Acta Biomaterialia 18, 59-67

Many cell therapies rely on the ability of mesenchymal stromal cells (MSCs) to diffuse and localize throughout the target tissue-such as tumoral and ischemic tissues-, in response to specific cytokine signals, rather than being concentrated at the site of implantation. Therefore, it is fundamental to engineer biomaterial carriers as reservoirs, from which cells can migrate, possibly in a controlled manner. In this work, microcarriers (μCs) made of polylactic acid are characterized as MSC delivery vehicles capable of modulating key chemotactic pathways. The effect of different functionalization strategies on MSC migratory behavior from the μCs is studied in vitro in relation to SDF-1α/CXCR4 axis,-a major actor in MSC recruitment, chemotaxis and homing. Collagen and arginine-glycine-aspartic acid (RGD) peptides were either covalently grafted or physisorbed on μC surface. While stable covalent modifications promoted better cell adhesion and higher proliferation compared to physisorption, the functionalization method of the μCs also affected the cells migratory behavior in response to SDF-1α (CXCL12) stimulation. Less stable coatings (physisorbed) showed sensibly higher number of migrating cells than covalent collagen/RGD coatings. The combination of physic-chemical cues provided by protein/peptide functionalization and stimuli induced by 3D culture on μCs improved MSC expression of CXCR4, and exerted a control over cell migration, a condition suitable to promote cell homing after transplantation in vivo. These are key findings to highlight the impact of surface modification approaches on chemokine-triggered cell release, and allow designing biomaterials for efficient and controlled cell delivery to damaged tissues.

JTD Keywords: Cell therapy, Chemotaxis, ECM (extracellular matrix), Mesenchymal stromal cells, Surface modification

Birhane, Y., Otero, J., Pérez-Murano, F., Fumagalli, L., Gomila, G., Bausells, J., (2014). Batch fabrication of insulated conductive scanning probe microscopy probes with reduced capacitive coupling Microelectronic Engineering , 119, 44-47

We report a novel fabrication process for the batch fabrication of insulated conductive scanning probe microscopy (SPM) probes for electrical and topographic characterization of soft samples in liquid media at the nanoscale. The whole SPM probe structure is insulated with a dielectric material except at the very tip end and at the contact pad area to minimize the leakage current in liquid. Additionally, the geometry of the conducting layer in the probe cantilever and substrate is engineered to reduce the parasitic capacitance coupling with the sample. The electrical characterization of the probes has shown that parasitic capacitances are significantly reduced as compared to fully metallized cantilevers.

JTD Keywords: Conductive scanning probe microscopy (C-SPM), EFM, SECM, SECM-AFM, SIM