DONATE

Publications

by Keyword: Scanning tunneling microscopy

López Ortiz, Manuel, Zamora, Ricardo A., Giannotti, Marina Inés, Hu, Chen, Croce, Roberta, Gorostiza, Pau, (2022). Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes Small 18, 2104366

Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant ?) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.© 2021 Wiley-VCH GmbH.

JTD Keywords: azurin, current distance decay spectroscopy, cytochrome c(6), electrochemical scanning tunneling microscopy (ecstm), electrochemistry, photosystem i, photosystem-i, plastocyanin, protein electron transfer, recognition, single metalloprotein, single molecules, structural basis, tunneling spectroscopy, 'current, Amino acids, Charge transfer, Chlorine compounds, Current distance decay spectroscopy, Decay spectroscopies, Distance decay, Electrochemical scanning tunneling microscopy, Electrochemical scanning tunneling microscopy (ecstm), Electrodes, Electron transfer, Electron transport properties, Gold compounds, Photosystem i, Photosystems, Protein electron transfer, Protein electron-transfer, Proteins, Scanning tunneling microscopy, Silver halides, Single molecule, Single molecules


Lagunas, A., Garcia, A., Artés, J. M., Vida, Y., Collado, D., Pérez-Inestrosa, E., Gorostiza, P., Claros, S., Andrades, J. A., Samitier, J., (2014). Large-scale dendrimer-based uneven nanopatterns for the study of local arginine-glycine-aspartic acid (RGD) density effects on cell adhesion Nano Research , 7, (3), 399-409

Cell adhesion processes are governed by the nanoscale arrangement of the extracellular matrix (ECM), being more affected by local rather than global concentrations of cell adhesive ligands. In many cell-based studies, grafting of dendrimers on surfaces has shown the benefits of the local increase in concentration provided by the dendritic configuration, although the lack of any reported surface characterization has limited any direct correlation between dendrimer disposition and cell response. In order to establish a proper correlation, some control over dendrimer surface deposition is desirable. Here, dendrimer nanopatterning has been employed to address arginine-glycine-aspartic acid (RGD) density effects on cell adhesion. Nanopatterned surfaces were fully characterized by atomic force microscopy (AFM), scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), showing that tunable distributions of cell adhesive ligands on the surface are obtained as a function of the initial dendrimer bulk concentration. Cell experiments showed a clear correlation with dendrimer surface layout: Substrates presenting regions of high local ligand density resulted in a higher percentage of adhered cells and a higher degree of maturation of focal adhesions (FAs). Therefore, dendrimer nanopatterning is presented as a suitable and controlled approach to address the effect of local ligand density on cell response. Moreover, due to the easy modification of dendrimer peripheral groups, dendrimer nanopatterning can be further extended to other ECM ligands having density effects on cells.

JTD Keywords: Arginine-glycine-aspartic acid, Atomic force microscopy, Cell adhesion, Dendrimer, Focal adhesions, Scanning tunneling microscopy


Artés, Juan M., Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2011). Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy ACS Nano 5, (3), 2060-2066

We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current-distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.

JTD Keywords: Long-range electron transfer (LRET), Distance decay constant, Single-molecule electrochemistry, Redox enzyme, Metalloprotein, Blue copper protein, Azurin, Electrochemical scanning tunneling microscopy and spectroscopy, Nanoelectrodes, Debye length, Electrochemical charge screening