by Keyword: Charge transfer
Ferrer Campos, Rebeca, Bakenecker, Anna C., Chen, Yufen, Spadaro, Maria Chiara, Fraire, Juan, Arbiol, Jordi, Sánchez, Samuel, Villa, Katherine, (2024). Boosting the Efficiency of Photoactive Rod-Shaped Nanomotors via Magnetic Field-Induced Charge Separation Acs Applied Materials & Interfaces 16, 30077-30087
Photocatalytic nanomotors have attracted a lot of attention because of their unique capacity to simultaneously convert light and chemical energy into mechanical motion with a fast photoresponse. Recent discoveries demonstrate that the integration of optical and magnetic components within a single nanomotor platform offers novel advantages for precise motion control and enhanced photocatalytic performance. Despite these advancements, the impact of magnetic fields on energy transfer dynamics in photocatalytic nanomotors remains unexplored. Here, we introduce dual-responsive rod-like nanomotors, made of a TiO2/NiFe heterojunction, able to (i) self-propel upon irradiation, (ii) align with the direction of an external magnetic field, and (iii) exhibit enhanced photocatalytic performance. Consequently, when combining light irradiation with a homogeneous magnetic field, these nanomotors exhibit increased velocities attributed to their improved photoactivity. As a proof-of-concept, we investigated the ability of these nanomotors to generate phenol, a valuable chemical feedstock, from benzene under combined optical and magnetic fields. Remarkably, the application of an external magnetic field led to a 100% increase in the photocatalytic phenol generation in comparison with light activation alone. By using various state-of-the-art techniques such as photoelectrochemistry, electrochemical impedance spectroscopy, photoluminescence, and electron paramagnetic resonance, we characterized the charge transfer between the semiconductor and the alloy component, revealing that the magnetic field significantly improved charge pair separation and enhanced hydroxyl radical generation. Consequently, our work provides valuable insights into the role of magnetic fields in the mechanisms of light-driven photocatalytic nanomotors for designing more effective light-driven nanodevices for selective oxidations.
JTD Keywords: Charge transfer, Dual-responsive nanomotors, Magnetic properties, Photoactive nanomotors, Photocatalysis, Selective oxidations
López-Ortiz, M, Zamora, RA, Giannotti, MI, Hu, C, Croce, R, Gorostiza, P, (2022). Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes Small 18, 2104366
Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant ?) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.© 2021 Wiley-VCH GmbH.
JTD Keywords: azurin, current distance decay spectroscopy, cytochrome c(6), electrochemical scanning tunneling microscopy (ecstm), electrochemistry, photosystem i, photosystem-i, plastocyanin, protein electron transfer, recognition, single metalloprotein, single molecules, structural basis, tunneling spectroscopy, 'current, Amino acids, Charge transfer, Chlorine compounds, Current distance decay spectroscopy, Decay spectroscopies, Distance decay, Electrochemical scanning tunneling microscopy, Electrochemical scanning tunneling microscopy (ecstm), Electrodes, Electron transfer, Electron transport properties, Gold compounds, Photosystem i, Photosystems, Protein electron transfer, Protein electron-transfer, Proteins, Scanning tunneling microscopy, Silver halides, Single molecule, Single molecules
Artés, J. M., López-Martínez, M., Díez-Pérez, I., Sanz, F., Gorostiza, P., (2014). Nanoscale charge transfer in redox proteins and DNA: Towards biomolecular electronics Electrochimica Acta 140, 83-95
Understanding how charges move through and between biomolecules is a fundamental question that constitutes the basis for many biological processes. On the other hand, it has potential applications in the design of sensors based on biomolecules and single molecule devices. In this review we introduce the study of the electron transfer (ET) process in biomolecules, providing an overview of the fundamental theory behind it and the different experimental approaches. The ET in proteins is introduced by reviewing a complete electronic characterization of a redox protein (azurin) using electrochemical scanning tunnelling microscopy (ECSTM). The ET process in DNA is overviewed and results from different experimental approaches are discussed. Finally, future directions in the study of the ET process in biomolecules are introduced as well as examples of possible technological applications.
JTD Keywords: Bioelectrochemistry, Biomolecular electronics, Charge transfer, Nanobiodevice, Single-molecule junction