DONATE

Publications

by Keyword: Skeletal-muscle,cytotoxicity,polymer

Molina, Brenda G, Fuentes, Judith, Aleman, Carlos, Sanchez, Samuel, (2024). Merging BioActuation and BioCapacitive properties: A 3D bioprinted devices to self-stimulate using self-stored energy Biosensors & Bioelectronics 251, 116117

Biofabrication of three-dimensional (3D) cultures through the 3D Bioprinting technique opens new perspectives and applications of cell-laden hydrogels. However, to continue with the progress, new BioInks with specific properties must be carefully designed. In this study, we report the synthesis and 3D Bioprinting of an electroconductive BioInk made of gelatin/fibrinogen hydrogel, C2C12 mouse myoblast and 5% w/w of conductive poly (3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs). The influence of PEDOT NPs, incorporated in the cellladen BioInk, not only showed a positive effect in cells viability, differentiation and myotube functionalities, also allowed the printed constructs to behaved as BioCapacitors. Such devices were able to electrochemically store a significant amount of energy (0.5 mF/cm2), enough to self-stimulate as BioActuator, with typical contractions ranging from 27 to 38 mu N, during nearly 50 min. The biofabrication of 3D constructs with the proposed electroconductive BioInk could lead to new devices for tissue engineering, biohybrid robotics or bioelectronics.

JTD Keywords: 3d bioprinting, Animal, Animals, Bioactuator, Bioactuators, Biocapacitor, Biofabrication, Bioprinting, Biosensing techniques, C2c12 myoblasts, Cells, Chemistry, Electric conductivity, Electroconductive, Electroconductive bioink, Ethylenedioxythiophenes, Genetic procedures, Hydrogel, Hydrogels, Mice, Mouse, Pedot nps, Pedot nps,3d bioprinting,electroconductive bioink,bioactuator,biocapacito, Poly (3,4-ethylenedioxythiophene) nanoparticle, Printing, three-dimensional, Procedures, Skeletal-muscle,cytotoxicity,polymer, Synthesis (chemical), Three dimensional printing, Tissue engineering, Tissue scaffolds