by Keyword: Skin delivery

Caddeo, C, Lucchesi, D, Fernàndez-Busquets, X, Valenti, D, Penno, G, Fadda, AM, Pucci, L, (2021). Efficacy of a resveratrol nanoformulation based on a commercially available liposomal platform International Journal Of Pharmaceutics 608, 121086

Scalability is one of the important factors slowing down or even impeding the clinical translation of nanoparticle-based systems. The latter need to be manufactured at a high level of quality, with batch-to-batch reproducibility, and need to be stable after the manufacturing process, during long-term storage and upon clinical administration. In this study, a vesicular formulation intended for cutaneous applications was developed by the easy reconstitution of a commercially available liposomal platform. Resveratrol, a naturally occurring compound with potent antioxidant activity, and Tween80, a hydrophilic non-ionic surfactant, were included in the formulation. The physico-chemical properties of the vesicles were assessed using light scattering and cryogenic transmission electron microscopy. Nanosized (around 80 nm) spherical and elongated, unilamellar vesicles were produced, with remarkable storage stability. The incorporation of resveratrol in the vesicular system did not alter its strong antioxidant activity, as demonstrated by antioxidant colorimetric assays (DPPH and FRAP). Furthermore, the resveratrol liposomes were cytocompatible with fibroblasts and capable of protecting skin cells from oxidative stress by reducing both endogenous and chemically induced reactive oxygen species more effectively than free resveratrol. Therefore, the proposed formulation, based on the use of a commercially available liposomal platform, represents an easy-to-prepare, reproducible, up-scaled and efficient means of delivering resveratrol and potentiating its biological activity in vitro.

JTD Keywords: antioxidant, commercial liposomes, resveratrol, skin cells, skin delivery, Antioxidant, Commercial liposomes, Drug-delivery, Resveratrol, Skin cells, Skin delivery

Caddeo, Carla, Manca, Maria Letizia, Peris, José Esteban, Usach, Iris, Diez-Sales, Octavio, Matos, Maria, Fernàndez-Busquets, Xavier, Fadda, Anna Maria, Manconi, Maria, (2018). Tocopherol-loaded transfersomes: In vitro antioxidant activity and efficacy in skin regeneration International Journal of Pharmaceutics 551, (1), 34-41

Transfersomes were prepared by using different polysorbates (i.e., Tween 20, 40, 60 and 80) and loaded with tocopherol acetate, a naturally-occurring phenolic compound with antioxidant activity. The vesicles showed unilamellar morphology, small size (∼85 nm), low polydispersity index (≤0.27), and high entrapment efficiency, which increased as a function of the length of the Tween fatty acid chain (from 72% to 90%). The long-term stability of the formulations was evaluated by means of the Turbiscan™ technology, which indicated their good stability, irrespective of the Tween used. The vesicles efficiently delivered tocopherol to the skin, and showed biocompatibility in vitro in keratinocytes and fibroblasts. Regardless of the Tween used, the transfersomes were able to protect skin cells from the oxidative damage induced by hydrogen peroxide. Additionally, transfersomes promoted cell proliferation and migration, which resulted in an acceleration of skin wound closure. These results demonstrated that tocopherol-loaded transfersomes bear potential as topical delivery system with antioxidant activity and wound healing properties.

JTD Keywords: Tocopherol, Transfersomes, Tween, Skin delivery, Antioxidant activity, Skin wound