DONATE

Publications

by Keyword: Antioxidant

Mohammed-Sadhakathullah, AHM, Paulo-Mirasol, S, Molina, BG, Torras, J, Armelin, E, (2024). PLA-PEG-Cholesterol biomimetic membrane for electrochemical sensing of antioxidants Electrochimica Acta 476, 143716

Polymeric membranes exhibit unique and modulate transport properties when they are properly functionalised, which make them ideal for ions transport, molecules separation and molecules interactions. The present work proposes the design and fabrication of nanostructured membranes, composed by biodegradable poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG), incorporating a lipophilic molecule (cholesterol) covalently bonded, were especially designed to provide even more application opportunities in sensors field. Electrochemical studies, by means of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV), revealed important differences regarding the functionalised and non-functionalised PLA systems. PEGcholesterol building block units showed a clear affinity with ascorbic acid (vitamin C) and Trolox (R) (a watersoluble analogue of vitamin E), both hydrophilic in nature, with a limit of detection capacity of 8.12 mu M for AA and 3.53 mu M for AA and Trolox, respectively, in aqueous salt solution. The bioinspired polymer may be used to incorporate antioxidant property that allow the design of anti-stress biosensors, electrodes for the detection of vitamin C or vitamin E in biomedical nutrition programs, among other applications.

JTD Keywords: Antioxidant molecules, Antioxidants, Application programs, Ascorbic acid, Biomimetics, C (programming language), Capacity, Chemical detection, Cholesterol, Cyclic voltammetry, Electrochemical detection, Electrochemical impedance spectroscopy, Functional polymers, Functionalized, Lactic acid, Molecules, Nanomembranes, Poly ethylene glycols, Poly lactic acid, Poly(ethylene glycol), Poly(ethyleneglycol), Poly(lactic acid), Polyethylene glycols, Vitamin-e


Valenti, S, Arioli, M, Jamett, A, Tamarit, JL, Puiggalí, J, Macovez, R, (2023). Amorphous solid dispersions of curcumin in a poly(ester amide): Antiplasticizing effect on the glass transition and macromolecular relaxation dynamics, and controlled release International Journal Of Pharmaceutics 644, 123333

In order to exploit the pharmacological potential of natural bioactive molecules with low water solubility, such as curcumin, it is necessary to develop formulations, such as amorphous polymer dispersions, which allow a constant release rate and at the same time avoid possible toxicity effects of the crystalline form of the molecule under scrutiny. In this study, polymer dispersions of curcumin were obtained in PADAS, a biodegradable semicrystalline copolymer based on 1,12-dodecanediol, sebacic acid and alanine. The dispersions were fully characterized by means of differential scanning calorimetry and broadband dielectric spectroscopy, and the drug release profile was measured in a simulated body fluid. Amorphous homogeneous binary dispersions were obtained for curcumin mass fraction between 30 and 50%. Curcumin has significantly higher glass transition temperature Tg (≈ 347 K) than the polymer matrix (≈274-277 K depending on the molecular weight), and dispersions displayed Tg's intermediate between those of the pure amorphous components, implying that curcumin acts as an effective antiplasticizer for PADAS. Dielectric spectroscopy was employed to assess the relaxation dynamics of the binary dispersion with 30 wt% curcumin, as well as that of each (amorphous) component separately. The binary dispersion was characterized by a single structural relaxation, a single Johari-Goldstein process, and two local intramolecular processes, one for each component. Interestingly, the latter processes scaled with the Tg of the sample, indicating that they are viscosity-sensitive. In addition, both the pristine polymer and the dispersion exhibited an interfacial Maxwell-Wagner relaxation, likely due to spatial heterogeneities associated with phase disproportionation in this polymer. The release of curcumin from the dispersion in a simulated body fluid followed a Fickian diffusion profile, and 51% of the initial curcumin content was released in 48 h.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: antioxidant, bioavailability, dielectric spectroscopy, domain havriliak-negami, glass transition temperature, kinetic stability, molecular mobility, nm pores, phase-behavior, physical stability, release kinetics, temperature, thermodynamic quantities, time, Amorphous formulations, Dielectric spectroscopy, Glass transition temperature, Kinetic stability, Kohlrausch-williams-watts, Molecular mobility, Release kinetics


Carter, SSD, Atif, AR, Diez-Escudero, A, Grape, M, Ginebra, MP, Tenje, M, Mestres, G, (2022). A microfluidic-based approach to investigate the inflammatory response of macrophages to pristine and drug-loaded nanostructured hydroxyapatite Materials Today Bio 16, 100351

The in vitro biological characterization of biomaterials is largely based on static cell cultures. However, for highly reactive biomaterials such as calcium-deficient hydroxyapatite (CDHA), this static environment has limitations. Drastic alterations in the ionic composition of the cell culture medium can negatively affect cell behavior, which can lead to misleading results or data that is difficult to interpret. This challenge could be addressed by a microfluidics-based approach (i.e. on-chip), which offers the opportunity to provide a continuous flow of cell culture medium and a potentially more physiologically relevant microenvironment. The aim of this work was to explore microfluidic technology for its potential to characterize CDHA, particularly in the context of inflammation. Two different CDHA substrates (chemically identical, but varying in microstructure) were integrated on-chip and subsequently evaluated. We demonstrated that the on-chip environment can avoid drastic ionic alterations and increase protein sorption, which was reflected in cell studies with RAW 264.7 macrophages. The cells grown on-chip showed a high cell viability and enhanced proliferation compared to cells maintained under static conditions. Whereas no clear differences in the secretion of tumor necrosis factor alpha (TNF-α) were found, variations in cell morphology suggested a more anti-inflammatory environment on-chip. In the second part of this study, the CDHA substrates were loaded with the drug Trolox. We showed that it is possible to characterize drug release on-chip and moreover demonstrated that Trolox affects the TNF-α secretion and morphology of RAW 264.7 ​cells. Overall, these results highlight the potential of microfluidics to evaluate (bioactive) biomaterials, both in pristine form and when drug-loaded. This is of particular interest for the latter case, as it allows the biological characterization and assessment of drug release to take place under the same dynamic in vitro environment.© 2022 The Authors.

JTD Keywords: alpha-tocopherol, antioxidant, biomaterials, calcium phosphate cement, culture, delivery, drug release, in vitro, in-vitro, ion, macrophage, on-chip, release, tool, Biomaterial, Calcium phosphate cement, Calcium-phosphate cements, Drug release, In vitro, Macrophage, On-chip


Perra, M, Manca, ML, Tuberoso, CIG, Caddeo, C, Marongiu, F, Peris, JE, Orru, G, Ibba, A, Fernandez-Busquets, X, Fattouch, S, Bacchetta, G, Manconi, M, (2022). A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification Innovative Food Science & Emerging Technologies 80, 103103

According to circular economy, wine-making by-products represent a fascinating biomass, which can be used for the sustainable exploitation of polyphenols and the development of new nanotechnological health-promoting products. In this study, polyphenols contained in the grape pomace were extracted by maceration with ethanol in an easy and low dissipative way. The obtained extract, rich in malvidin-3-glucoside, quercetin, pro-cyanidin B2 and gallic acid, was incorporated into phospholipid vesicles tailored for intestinal delivery. To improve their performances, vesicles were enriched with gelatine or a maltodextrin (Nutriose (R)), or their com-bination (gelatine-liposomes, nutriosomes and gelatine-nutriosomes). The small (-147 nm) and negatively charged (--50mV) vesicles were stable at different pH values mimicking saliva (6.75), gastric (1.20) and intestinal (7.00) environments. Vesicles effectively protected intestinal cells (Caco-2) from the oxidative stress and promoted the biofilm formation by probiotic bacteria. A preliminary evaluation of the vesicle feasibility at industrial levels was also performed, analysing the economic and energetic costs needed for their production.

JTD Keywords: Adhesion, Antioxidant activity, Caco-2 cells, Dextrin, Grape pomace extract, Lactobacillus-reuteri, Manufacturing costs, Oxidative stress, Ph, Phospholipid vesicles, Polyphenols, Probiotic bacteria, Protein


De Luca, M, Lucchesi, D, Tuberoso, CIG, Fernàndez-Busquets, X, Vassallo, A, Martelli, G, Fadda, AM, Pucci, L, Caddeo, C, (2022). Liposomal Formulations to Improve Antioxidant Power of Myrtle Berry Extract for Potential Skin Application Pharmaceutics 14, 910

Many substances in plant extracts are known for their biological activities. These substances act in different ways, exerting overall protective effects against many diseases, especially skin disorders. However, plant extracts’ health benefits are often limited by low bioavailability. To overcome these limitations, drug delivery systems can be employed. In this study, we evaluated the antioxidant power of an ethanolic extract from Myrtus communis L. (myrtle) berries through colorimetric tests (DPPH and FRAP). The antioxidant activity was also verified by using fibroblast cell culture through cellular Reactive Oxygen Species (ROS) levels measurements. Moreover, the myrtle extract was formulated in phospholipid vesicles to improve its bioavailability and applicability. Myrtle liposomes were characterized by size, surface charge, storage stability, and entrapment efficiency; visualized by using cryo-TEM images; and assayed for cytocompatibility and anti-ROS activity. Our results suggest that myrtle liposomes were cytocompatible and improved the extract’s antioxidant power in fibroblasts, suggesting a potential skin application for these formulations and confirming that nanotechnologies could be a valid tool to enhance plant extracts’ potentialities.

JTD Keywords: antioxidant, bioactive compounds, capacity, essential oils, fibroblast, liposomes, myrtle extract, skin, Communis l., Myrtle extract, Skin


Marte, L, Boronat, S, Barrios, R, Barcons-Simon, A, Bolognesi, B, Cabrera, M, Ayté, J, Hidalgo, E, (2022). Expression of Huntingtin and TDP-43 Derivatives in Fission Yeast Can Cause Both Beneficial and Toxic Effects International Journal Of Molecular Sciences 23, 3950

Many neurodegenerative disorders display protein aggregation as a hallmark, Huntingtin and TDP-43 aggregates being characteristic of Huntington disease and amyotrophic lateral sclerosis, respectively. However, whether these aggregates cause the diseases, are secondary by-products, or even have protective effects, is a matter of debate. Mutations in both human proteins can modulate the structure, number and type of aggregates, as well as their toxicity. To study the role of protein aggregates in cellular fitness, we have expressed in a highly tractable unicellular model different variants of Huntingtin and TDP-43. They each display specific patterns of aggregation and toxicity, even though in both cases proteins have to be very highly expressed to affect cell fitness. The aggregation properties of Huntingtin, but not of TDP-43, are affected by chaperones such as Hsp104 and the Hsp40 couple Mas5, suggesting that the TDP-43, but not Huntingtin, derivatives have intrinsic aggregation propensity. Importantly, expression of the aggregating form of Huntingtin causes a significant extension of fission yeast lifespan, probably as a consequence of kidnapping chaperones required for maintaining stress responses off. Our study demonstrates that in general these prion-like proteins do not cause toxicity under normal conditions, and in fact they can protect cells through indirect mechanisms which up-regulate cellular defense pathways. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: aggregation, antioxidant, degradation, features, fission yeast, gene, huntingtin, neurodegenerative diseases, pap1, polyglutamine toxicity, protein aggregation, proteins, stress, tdp-43, Amyotrophic-lateral-sclerosis, Chaperone, Chemistry, Dna binding protein, Dna-binding proteins, Fission yeast, Genetics, Human, Humans, Huntingtin, Metabolism, Molecular chaperones, Neurodegenerative diseases, Prion, Prions, Protein aggregate, Protein aggregates, Protein aggregation, Schizosaccharomyces, Tdp-43


Caddeo, C, Lucchesi, D, Fernàndez-Busquets, X, Valenti, D, Penno, G, Fadda, AM, Pucci, L, (2021). Efficacy of a resveratrol nanoformulation based on a commercially available liposomal platform International Journal Of Pharmaceutics 608, 121086

Scalability is one of the important factors slowing down or even impeding the clinical translation of nanoparticle-based systems. The latter need to be manufactured at a high level of quality, with batch-to-batch reproducibility, and need to be stable after the manufacturing process, during long-term storage and upon clinical administration. In this study, a vesicular formulation intended for cutaneous applications was developed by the easy reconstitution of a commercially available liposomal platform. Resveratrol, a naturally occurring compound with potent antioxidant activity, and Tween80, a hydrophilic non-ionic surfactant, were included in the formulation. The physico-chemical properties of the vesicles were assessed using light scattering and cryogenic transmission electron microscopy. Nanosized (around 80 nm) spherical and elongated, unilamellar vesicles were produced, with remarkable storage stability. The incorporation of resveratrol in the vesicular system did not alter its strong antioxidant activity, as demonstrated by antioxidant colorimetric assays (DPPH and FRAP). Furthermore, the resveratrol liposomes were cytocompatible with fibroblasts and capable of protecting skin cells from oxidative stress by reducing both endogenous and chemically induced reactive oxygen species more effectively than free resveratrol. Therefore, the proposed formulation, based on the use of a commercially available liposomal platform, represents an easy-to-prepare, reproducible, up-scaled and efficient means of delivering resveratrol and potentiating its biological activity in vitro.

JTD Keywords: antioxidant, commercial liposomes, resveratrol, skin cells, skin delivery, Antioxidant, Commercial liposomes, Drug-delivery, Resveratrol, Skin cells, Skin delivery


De Matteis, V, Cascione, M, Rizzello, L, Manno, DE, Di Guglielmo, C, Rinaldi, R, (2021). Synergistic effect induced by gold nanoparticles with polyphenols shell during thermal therapy: Macrophage inflammatory response and cancer cell death assessment Cancers 13, 3610

Background: In recent decades, gold nanoparticle (Au NP)-based cancer therapy has been heavily debated. The physico-chemical properties of AuNPs can be exploited in photothermal therapy, making them a powerful tool for selectively killing cancer cells. However, the synthetic side products and capping agents often induce a strong activation of the inflammatory pathways of macrophages, thus limiting their further applications in vivo. Methods: Here, we described a green method to obtain stable polyphenol-capped AuNPs (Au NPs@polyphenols), as polyphenols are known for their anti-inflammatory and anticancer properties. These NPs were used in human macrophages to test key inflammation-related markers, such as NF-κB, TNF-α, and interleukins-6 and 8. The results were compared with similar NPs obtained by a traditional chemical route (without the polyphenol coating), proving the potential of Au NPs@polyphenols to strongly promote the shutdown of inflammation. This was useful in developing them for use as heat-synergized tools in the thermal treatment of two types of cancer cells, namely, breast cancer (MCF-7) and neuroblastoma (SH-SY5Y) cells. The cell viability, calcium release, oxidative stress, HSP-70 expression, mitochondrial, and DNA damage, as well as cytoskeleton alteration, were evaluated. Results: Our results clearly demonstrate that the combined strategy markedly exerts anticancer effects against the tested cancer cell, while neither of the single treatments (only heat or only NPs) induced significant changes. Conclusions: Au NP@polyphenols may be powerful agents in cancer treatment.

JTD Keywords: antioxidant, aunps, biocompatibility, biology, calcium, cancer, green synthesis, inflammation response, inhibition, interleukin-6, mechanisms, natural polyphenols, physico-chemical properties, polyphenols, size, thermal treatment, Aunps, Cancer, Green synthesis, Inflammation response, Nobilis l. leaves, Physico-chemical properties, Polyphenols, Thermal treatment


Abramov, A, Maiti, B, Keridou, I, Puiggalí, J, Reiser, O, Díaz, DD, (2021). A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates Macromolecular Rapid Communications 42, 2100213

A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)(n)-alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG(2000)-alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG(2000)-oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.

JTD Keywords: coumarins, drug delivery, e/z-double bond isomerization, o-hydroxy cinnamates, polymer degradation, Aliphatic compounds, Antioxidant activity, Antitumor, Chromatographic techniques, Chromatography, Cis/trans isomerization, Controlled drug delivery, Coumarin derivatives, Coumarins, Drug delivery, Drug delivery system, E/z-double bond isomerization, Films, Hydrogels, Image enhancement, Light, Long term stability, O-hydroxy cinnamates, Particles, Photoactive monomers, Photodegradation, Polyethylene glycols, Polyethylenes, Polymer degradation, Responsive polymers, Salts, Structural motifs, Synthesis (chemical), Targeted drug delivery, Visible light photocatalysis, Visible-light irradiation


De Matteis, V, Rizzello, L, Ingrosso, C, Rinaldi, R, (2021). Purification of olive mill wastewater through noble metal nanoparticle synthesis: waste safe disposal and nanomaterial impact on healthy hepatic cell mitochondria Environmental Science And Pollution Research 28, 26154-26171

The exponential increase of waste derived from different human activities points out the importance of their reuse in order to create materials with specific properties that can be used for different applications. In this work, it was showed how the typical Mediterranean organic liquid waste, namely olive mill wastewater (OMWW), obtained during olive oil production, can be turned into an efficient reactive agent for the production of noble metals gold (Au) and silver nanoparticles (Ag NPs) with very well-defined physico-chemical properties. More than that, it was demonstrated that this synthetic procedure also leads to a drastic decrease of the organic pollution load of the OMWW, making it safer for environmental disposal and plants irrigation. Then, using healthy hepatic cell line mitochondria, the biological effects induced by these green metal NPs surrounded by a polyphenols shell, with the same NPs synthetized through a standard chemical colloidal reduction process, were compared, finding out that the green NPs are much safer.

JTD Keywords: antioxidants perturbation, green synthesis, gtpase dynamin-related protein 1 expression, mitochondria assessment, physico-chemical properties, Antioxidants perturbation, Green synthesis, Gtpase dynamin-related protein 1 expression, Mitochondria assessment, Physico-chemical properties, Reusability of waste


Allaw, M., Manca, M. L., Caddeo, C., Recio, M. C., Pérez-Brocal, V., Moya, A., Fernàndez-Busquets, X., Manconi, M., (2020). Advanced strategy to exploit wine-making waste by manufacturing antioxidant and prebiotic fibre-enriched vesicles for intestinal health Colloids and Surfaces B: Biointerfaces 193, 111146

Grape extract-loaded fibre-enriched vesicles, nutriosomes, were prepared by combining antioxidant extracts obtained from grape pomaces and a prebiotic, soluble fibre (Nutriose®FM06). The nutriosomes were small in size (from ∼140 to 260 nm), homogeneous (polydispersity index < 0.2) and highly negative (∼ −79 mV). The vesicles were highly stable during 12 months of storage at 25 °C. When diluted with warmed (37 °C) acidic medium (pH 1.2) of high ionic strength, the vesicles only displayed an increase of the mean diameter and a low release of the extract, which were dependent on Nutriose concentration. The formulations were highly biocompatible and able to protect intestinal cells (Caco-2) from oxidative stress damage. In vivo results underlined that the composition of mouse microbiota was not affected by the vesicular formulations. Overall results support the potential application of grape nutriosomes as an alternative strategy for the protection of the intestinal tract.

JTD Keywords: Antioxidant activity, Grape pomace, Gut microbiota, In vivo studies, Intestinal cells, Nutriosomes, Phospholipid vesicles, Prebiotic activity


Romero-Montero, A., del Valle, L. J., Puiggalí, J., Montiel, C., García-Arrazola, R., Gimeno, M., (2020). Poly(gallic acid)-coated polycaprolactone inhibits oxidative stress in epithelial cells Materials Science and Engineering C 115, 111154

Enzymatic mediated poly (gallic acid) (PGAL), a stable multiradical polyanion with helicoidal secondary structure and high antioxidant capacity, was successfully grafted to poly(ε-caprolactone) (PCL) using UV-photo induction. PCL films were prepared with several levels of roughness and subsequently grafted with PGAL (PCL-g-PGAL). The results on the full characterization of the produced materials by mechanical tests, surface morphology, and topography, thermal and crystallographic analyses, as well as wettability and cell protection activity against oxidative stress, were adequate for tissue regeneration. The in vitro biocompatibility was then assessed with epithelial-like cells showing excellent adhesion and proliferation onto the PCL-g-PGAL films, most importantly, PCL-g-PGAL displayed a good ability to protect cell cultures on their surface against reactive oxygen species. These biomaterials can consequently be considered as novel biocompatible and antioxidant films with high-responsiveness for biomedical or tissue engineering applications.

JTD Keywords: Antioxidant, Poly(gallic acid), Polyphenol, Radical oxygen species


Caddeo, C., Gabriele, M., Fernàndez-Busquets, X., Valenti, D., Fadda, A. M., Pucci, L., Manconi, M., (2019). Antioxidant activity of quercetin in Eudragit-coated liposomes for intestinal delivery International Journal of Pharmaceutics 565, 64-69

Quercetin, a natural polyphenol with strong antioxidant activity, was loaded in Eudragit-coated liposomes conceived for intestinal delivery. Eudragit was used to form a protective shell on the surface of liposomes to resist gastric environment and allow the delivery of quercetin to the intestine. The physico-chemical properties of the liposomes were assessed by light scattering and cryogenic transmission electron microscopy. Small, spherical, uni- and bilamellar liposomes were produced, with the presence of multilamellar structures in Eudragit-coated liposomes. The Eudragit coating increased the physical stability of the vesicular system in fluids mimicking the gastrointestinal environment. Further, the incorporation of quercetin in the vesicular system did not affect its intrinsic antioxidant activity, as DPPH radical was almost completely inhibited, and the vesicles were also capable of ensuring optimal protection against oxidative stress in human intestinal cells by reducing reactive oxygen species (ROS)production. The proposed approach based on quercetin vesicular formulations may be of value in the treatment of pathological conditions associated with intestinal oxidative stress.

JTD Keywords: Antioxidant, Eudragit, HT-29 cells, Intestinal delivery, Liposomes, Quercetin


Caddeo, Carla, Pucci, Laura, Gabriele, Morena, Carbone, Claudia, Fernàndez-Busquets, Xavier, Valenti, Donatella, Pons, Ramon, Vassallo, Antonio, Fadda, Anna Maria, Manconi, Maria, (2018). Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol International Journal of Pharmaceutics 538, (1), 40-47

The present investigation reports the development of PEG-modified liposomes for the delivery of naturally occurring resveratrol. PEG-modified liposomes were prepared by direct sonication of the phospholipid aqueous dispersion, in the presence of two PEG-surfactants. Small, spherical, unilamellar vesicles were produced, as demonstrated by light scattering, cryo-TEM, and SAXS. The aging of the vesicles was assessed by using the Turbiscan® technology, and their physical stability was evaluated in vitro in simulated body fluids, results showing that the key features of the liposomes were preserved. The biocompatibility of the formulations was demonstrated in an ex vivo model of hemolysis in human erythrocytes. Further, the incorporation of resveratrol in PEG-modified liposomes did not affect its intrinsic antioxidant activity, as DPPH radical was almost completely inhibited, and the vesicles were also able to ensure an optimal protection against oxidative stress in an ex vivo human erythrocytes-based model. Therefore, the proposed PEG-modified liposomes, which were prepared by a simple and reliable method, represent an interesting approach to safely deliver resveratrol, ensuring the preservation of the carrier structural integrity in the biological fluids, and the antioxidant efficacy of the polyphenol to be exploited against oxidative stress associated with cancer.

JTD Keywords: Resveratrol, Antioxidant, PEG-surfactants, PEG-modified liposomes, Human erythrocytes


Caddeo, Carla, Manca, Maria Letizia, Peris, José Esteban, Usach, Iris, Diez-Sales, Octavio, Matos, Maria, Fernàndez-Busquets, Xavier, Fadda, Anna Maria, Manconi, Maria, (2018). Tocopherol-loaded transfersomes: In vitro antioxidant activity and efficacy in skin regeneration International Journal of Pharmaceutics 551, (1), 34-41

Transfersomes were prepared by using different polysorbates (i.e., Tween 20, 40, 60 and 80) and loaded with tocopherol acetate, a naturally-occurring phenolic compound with antioxidant activity. The vesicles showed unilamellar morphology, small size (∼85 nm), low polydispersity index (≤0.27), and high entrapment efficiency, which increased as a function of the length of the Tween fatty acid chain (from 72% to 90%). The long-term stability of the formulations was evaluated by means of the Turbiscan™ technology, which indicated their good stability, irrespective of the Tween used. The vesicles efficiently delivered tocopherol to the skin, and showed biocompatibility in vitro in keratinocytes and fibroblasts. Regardless of the Tween used, the transfersomes were able to protect skin cells from the oxidative damage induced by hydrogen peroxide. Additionally, transfersomes promoted cell proliferation and migration, which resulted in an acceleration of skin wound closure. These results demonstrated that tocopherol-loaded transfersomes bear potential as topical delivery system with antioxidant activity and wound healing properties.

JTD Keywords: Tocopherol, Transfersomes, Tween, Skin delivery, Antioxidant activity, Skin wound


Caddeo, C., Pons, R., Carbone, C., Fernàndez-Busquets, X., Cardia, M. C., Maccioni, A. M., Fadda, A. M., Manconi, M., (2017). Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol Carbohydrate Polymers , 157, 1853-1861

In the present work, quercetin and resveratrol, natural polyphenols with strong antioxidant and anti-inflammatory properties, were co-loaded in polymer-associated liposomes conceived for oral delivery, by exploiting the potential of pH-sensitive succinyl-chitosan. Chitosan was succinylated, characterized by Nuclear Magnetic Resonance spectroscopy and Gel Permeation Chromatography, and used to form a protective shell on the surface of liposomes. The physico-chemical properties of the succinyl-chitosan liposomes were assessed by light scattering, zeta potential, cryogenic transmission electron microscopy, and small angle X-ray scattering. Small, spherical, uni- and bilamellar vesicles were produced. The succinyl-chitosan shell increased not only the physical stability of the vesicular system, as demonstrated by accelerated stability tests, but also the release of the polyphenols to a greater extent at pH 7.0, mimicking the intestinal environment. The proposed approach based on polyphenol vesicular formulations may be of value in the treatment of pre-cancerous/cancerous intestinal conditions associated with inflammation and oxidative stress.

JTD Keywords: Antioxidant, Liposome, Oral delivery, Quercetin, Resveratrol, Succinyl-chitosan


Caddeo, C., Nacher, A., Vassallo, A., Armentano, M. F., Pons, R., Fernàndez-Busquets, X., Carbone, C., Valenti, D., Fadda, A. M., Manconi, M., (2016). Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer International Journal of Pharmaceutics 513, (1-2), 153-163

The present investigation reports the development of liposomes for the co-delivery of naturally occurring polyphenols, namely quercetin and resveratrol. Small, spherical, uni/bilamellar vesicles were produced, as demonstrated by light scattering, cryo-TEM, SAXS. The incorporation of quercetin and resveratrol in liposomes did not affect their intrinsic antioxidant activity, as DPPH radical was almost completely inhibited. The cellular uptake of the polyphenols was higher when they were formulated in liposomes, and especially when co-loaded rather than as single agents, which resulted in a superior ability to scavenge ROS in fibroblasts. The in vivo efficacy of the polyphenols in liposomes was assessed in a mouse model of skin lesion. The topical administration of liposomes led to a remarkable amelioration of the tissue damage, with a significant reduction of oedema and leukocyte infiltration. Therefore, the proposed approach based on polyphenol vesicular formulation may be of value in the treatment of inflammation/oxidative stress associated with pre-cancerous/cancerous skin lesions.

JTD Keywords: Antioxidant, Fibroblast, Liposome, Quercetin, Resveratrol, Skin lesion


Dalmases, M., Torres, M., Márquez-Kisinousky, L., Almendros, I., Planas, A. M., Embid, C., Martínez-Garcia, M. A., Navajas, D., Farré, R., Montserrat, J. M., (2014). Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats Sleep , 37, (7), 1249-1256

Study Objectives: To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). Interventions: Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. Measurements and Results: Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. Conclusions: The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats.

JTD Keywords: Aging, Animal model, Obstructive apnea, Oxidative stress, Tissue oxygenation, antioxidant, glutathione disulfide, aged, animal experiment, animal model, animal tissue, apnea, arterial oxygen saturation, article, brain cortex, brain oxygen tension, brain tissue, controlled study, groups by age, hypoxia, lipid peroxidation, male, nonhuman, oxidative stress, pressure, priority journal, rat