DONATE

Publications

by Keyword: Sleep-apnea

Almendros, I., Montserrat, J. M., Torres, M., Gonzalez, C., Navajas, D., Farre, R., (2010). Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea Respiratory Research , 11, (3), 1-6

Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO(2)) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O-2 supply during recurrent swings in arterial SpO(2) in an animal model of OSA. Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO(2) was measured by pulse oximetry. The time dependence of arterial SpO(2) and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results: Arterial SpO(2) showed a stable periodic pattern (no significant changes in maximum [95.5 +/- 0.5%; m +/- SE] and minimum values [83.9 +/- 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO(2). The minimum cerebral cortex PtO2 computed during the first apnea (29.6 +/- 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 +/- 2.9 mmHg; p = 0.011). In contrast to SpO(2), the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 +/- 3.9 mmHg) and minimum (43.7 +/- 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O-2 supply induced by obstructive apneas mimicking OSA.

JTD Keywords: Near-infrared spectroscopy, Sleep-apnea, Iintermittent hypoxia, Cerebral oxygenation, Oxidative stress, Blood-flow, Rat, Apoptosis, Inflammation, Hypercapnia


Carreras, A., Rojas, M., Tsapikouni, T., Montserrat, J. M., Navajas, D., Farre, R., (2010). Obstructive apneas induce early activation of mesenchymal stem cells and enhancement of endothelial wound healing Respiratory Research , 11, (91), 1-7

Background: The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing. Methods: We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair. Results: Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 +/- 0.58 (m +/- SE) and 1.00 +/- 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 +/- 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 +/- 0.24 -fold; p < 0.05). Conclusions: The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.

JTD Keywords: Induced acute lung, Sleep-apnea, Intermitent hypoxia, Cardiovascular-disease, Progenito Cells, Rat model, Inflammation, Mechanisms, Repair, Blood


Correa, L. S., Laciar, E., Torres, A., Jané, R., (2008). Performance evaluation of three methods for respiratory signal estimation from the electrocardiogram IEEE Engineering in Medicine and Biology Society Conference Proceedings 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (ed. IEEE), IEEE (Vancouver, Canada) 1-8, 4760-4763

A comparative study of three methods for estimating respiratory signal through electrocardiogram (ECG) was carried out. The three methods analyzed were based on R wave area, R peak amplitude and heart rate variability (HRV). For each method, cross-correlation coefficient and spectral coherence in a range of frequencies up to 0.5 Hz were computed between the ECG derived respiratory signals (EDR) and the three real respiratory signals: oronasal, and two inductance plethysmographies recordings (chest and abdominal). Results indicate that EDR methods based on R wave area and HRV are better correlated and show a wider spectral coherence with real respiratory signals than the other EDR method based on R peak amplitude.

JTD Keywords: Obstructive sleep-apnea