by Keyword: Tissue engineering scaffold

Zeinali R, Del Valle LJ, Torras J, Puiggalí J, (2021). Recent progress on biodegradable tissue engineering scaffolds prepared by thermally-induced phase separation (Tips) International Journal Of Molecular Sciences 22, 3504

Porous biodegradable scaffolds provide a physical substrate for cells allowing them to attach, proliferate and guide the formation of new tissues. A variety of techniques have been developed to fabricate tissue engineering (TE) scaffolds, among them the most relevant is the thermally-induced phase separation (TIPS). This technique has been widely used in recent years to fabricate three-dimensional (3D) TE scaffolds. Low production cost, simple experimental procedure and easy processability together with the capability to produce highly porous scaffolds with controllable architecture justify the popularity of TIPS. This paper provides a general overview of the TIPS methodology applied for the preparation of 3D porous TE scaffolds. The recent advances in the fabrication of porous scaffolds through this technique, in terms of technology and material selection, have been reviewed. In addition, how properties can be effectively modified to serve as ideal substrates for specific target cells has been specifically addressed. Additionally, examples are offered with re-spect to changes of TIPS procedure parameters, the combination of TIPS with other techniques and innovations in polymer or filler selection.

JTD Keywords: biodegradable polymer, composites, morphology, pore structure, porosity, processing parameters, thermally induced phase separation, Biodegradable polymer, Composites, Morphology, Pore structure, Porosity, Processing parameters, Thermally induced phase separation, Tissue engineering scaffold