DONATE

Publications

by Keyword: Virulence

Javier-Reyna, R, Avalos-Padilla, Y, Marion, S, (2023). Editorial: Vesicular transport, the actin cytoskeleton and their involvement in virulence mechanisms during host-parasite interaction Frontiers In Cellular And Infection Microbiology 13, 1229067

Guallar-Garrido, S, Campo-Perez, V, Perez-Trujillo, M, Cabrera, C, Senserrich, J, Sanchez-Chardi, A, Rabanal, RM, Gomez-Mora, E, Noguera-Ortega, E, Luquin, M, Julian, E, (2022). Mycobacterial surface characters remodeled by growth conditions drive different tumor-infiltrating cells and systemic IFN-gamma/IL-17 release in bladder cancer treatment Oncoimmunology 11, 2051845

The mechanism of action of intravesical Mycobacterium bovis BCG immunotherapy treatment for bladder cancer is not completely known, leading to misinterpretation of BCG-unresponsive patients, who have scarce further therapeutic options. BCG is grown under diverse culture conditions worldwide, which can impact the antitumor effect of BCG strains and could be a key parameter of treatment success. Here, BCG and the nonpathogenic Mycobacterium brumae were grown in four culture media currently used by research laboratories and BCG manufacturers: Sauton-A60, -G15 and -G60 and Middlebrook 7H10, and used as therapies in the orthotopic murine BC model. Our data reveal that each mycobacterium requires specific culture conditions to induce an effective antitumor response. since higher survival rates of tumor-bearing mice were achieved using M. brumae-A60 and BCG-G15 than the rest of the treatments. M. brumae-A60 was the most efficacious among all tested treatments in terms of mouse survival, cytotoxic activity of splenocytes against tumor cells, higher systemic production of IL-17 and IFN-gamma, and bladder infiltration of selected immune cells such as ILCs and CD4(TEM). BCG-G15 triggered an antitumor activity based on a massive infiltration of immune cells, mainly CD3(+) (CD4(+) and CD8(+)) T cells, together with high systemic IFN-gamma release. Finally, a reduced variety of lipids was strikingly observed in the outermost layer of M. brumae-A60 and BCG-G15 compared to the rest of the cultures, suggesting an influence on the antitumor immune response triggered. These findings contribute to understand how mycobacteria create an adequate niche to help the host subvert immunosuppressive tumor actions.

JTD Keywords: bcg, innate immune response, innate-lymphoid cells, lipid, non-muscle invasive, Bcg, Calmette-guerin bcg, Glycerol, Identification, Immune-response, Innate immune response, Innate-lymphoid cells, Lipid, Lipids, Mycolic acids, Neutral-red, Non-muscle invasive, Phenolic glycolipids, Tuberculosis, Tumor microenvironment, Virulence


Campo-Perez, V, Guallar-Garrido, S, Luquin, M, Sanchez-Chardi, A, Julian, E, (2022). The High Plasticity of Nonpathogenic Mycobacterium brumae Induces Rapid Changes in Its Lipid Profile during Pellicle Maturation: The Potential of This Bacterium as a Versatile Cell Factory for Lipid Compounds of Therapeutic Interest International Journal Of Molecular Sciences 23, 13609

The immunomodulatory potential of mycobacteria to be used for therapeutic purposes varies by species and culture conditions and is closely related to mycobacterial lipid composition. Although the lipids present in the mycobacterial cell wall are relevant, lipids are mainly stored in intracellular lipid inclusions (ILIs), which have emerged as a crucial structure in understanding mycobacteria-host interaction. Little is known about ILI ultrastructure, production, and composition in nonpathogenic species. In this study, we compared the lipid profiles of the nonpathogenic immunomodulatory agent Mycobacterium brumae during pellicle maturation under different culture conditions with qualitative and quantitative approaches by using high-resolution imaging and biochemical and composition analyses to understand ILI dynamics. The results showed wax esters, mainly in early stages of development, and acylglycerols in mature ILI composition, revealing changes in dynamics, amount, and morphometry, depending on pellicle maturation and the culture media used. Low-glycerol cultures induced ILIs with lower molecular weights which were smaller in size in comparison with the ILIs produced in glycerol-enriched media. The data also indicate the simple metabolic plasticity of lipid synthesis in M. brumae, as well as its high versatility in generating different lipid profiles. These findings provide an interesting way to enhance the production of key lipid structures via the simple modulation of cell culture conditions.

JTD Keywords: cell wall, electron microscopy, intrabacterial, lipid inclusions, mycobacterium, Bodies, Cell wall, Electron microscopy, Growth, In-vitro, Intrabacterial, Lipid inclusions, Mycobacterium, Prokaryotes, Triacylglycerol, Tuberculosis, Ultrastructural imaging, Virulence, Wax esters


Fernandez-Vazquez, J, Cabrer-Panes, JD, Aberg, A, Juarez, A, Madrid, C, Gaviria-Cantin, T, Fernandez-Coll, L, Vargas-Sinisterra, AF, Jimenez, CJ, Balsalobre, C, (2022). ppGpp, the General Stress Response Alarmone, Is Required for the Expression of the alpha-Hemolysin Toxin in the Uropathogenic Escherichia coli Isolate, J96 International Journal Of Molecular Sciences 23, 12256

ppGpp is an intracellular sensor that, in response to different types of stress, coordinates the rearrangement of the gene expression pattern of bacteria to promote adaptation and survival to new environmental conditions. First described to modulate metabolic adaptive responses, ppGpp modulates the expression of genes belonging to very diverse functional categories. In Escherichia coli, ppGpp regulates the expression of cellular factors that are important during urinary tract infections. Here, we characterize the role of this alarmone in the regulation of the hlyCABD(II) operon of the UPEC isolate J96, encoding the toxin alpha-hemolysin that induces cytotoxicity during infection of bladder epithelial cells. ppGpp is required for the expression of the alpha-hemolysin encoded in hlyCABD(II) by stimulating its transcriptional expression. Prototrophy suppressor mutations in a ppGpp-deficient strain restore the alpha-hemolysin expression from this operon to wild-type levels, confirming the requirement of ppGpp for its expression. ppGpp stimulates hlyCABD(II) expression independently of RpoS, RfaH, Zur, and H-NS. The expression of hlyCABD(II) is promoted at 37 degrees C and at low osmolarity. ppGpp is required for the thermoregulation but not for the osmoregulation of the hlyCABD(II) operon. Studies in both commensal and UPEC isolates demonstrate that no UPEC specific factor is strictly required for the ppGpp-mediated regulation described. Our data further support the role of ppGpp participating in the coordinated regulation of the expression of bacterial factors required during infection.

JTD Keywords: gene regulation, ppgpp, upec, Alpha-hemolysin, Bacterial signal molecule, Determinants, Environmental-regulation, Gene regulation, H-ns, Ppgpp, Protein, Regulator, Rfah, Secretion, Transcription, Upec, Virulence, Α-hemolysin


Gawish, R, Starkl, P, Pimenov, L, Hladik, A, Lakovits, K, Oberndorfer, F, Cronin, SJF, Ohradanova-Repic, A, Wirnsberger, G, Agerer, B, Endler, L, Capraz, T, Perthold, JW, Cikes, D, Koglgruber, R, Hagelkruys, A, Montserrat, N, Mirazimi, A, Boon, L, Stockinger, H, Bergthaler, A, Oostenbrink, C, Penninger, JM, Knapp, S, (2022). ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFNy-driven immunopathology Elife 11, e74623

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al.

JTD Keywords: covid-19 mouse model, covid-19 therapy, cytokine storm, immunology, inflammation, mavie16, mouse, mouse-adapted sars-cov-2, program, recombinant soluble ace2, tmprss2, Adaptive immunity, Angiotensin converting enzyme 2, Angiotensin-converting enzyme 2, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Apoptosis, Article, Bagg albino mouse, Breathing rate, Bronchoalveolar lavage fluid, C57bl mouse, Cell composition, Cell infiltration, Controlled study, Coronavirus disease 2019, Coronavirus spike glycoprotein, Covid-19, Cytokeratin 18, Cytokine production, Dipeptidyl carboxypeptidase, Disease model, Disease models, animal, Disease severity, Drosophila-melanogaster, Enzyme linked immunosorbent assay, Expression vector, Flow cytometry, Gamma interferon, Gene editing, Gene expression, Gene mutation, Genetic engineering, Genetics, Glycosylation, High mobility group b1 protein, Histology, Histopathology, Immune response, Immunocompetent cell, Immunology, Immunopathology, Interferon-gamma, Interleukin 2, Metabolism, Mice, inbred balb c, Mice, inbred c57bl, Mouse-adapted sars-cov-2, Myeloperoxidase, Neuropilin 1, Nonhuman, Nucleocapsid protein, Pathogenicity, Peptidyl-dipeptidase a, Pyroptosis, Recombinant soluble ace2, Renin angiotensin aldosterone system, Rna extraction, Rna isolation, Sars-cov-2, Severe acute respiratory syndrome coronavirus 2, Spike glycoprotein, coronavirus, T lymphocyte activation, Trabecular meshwork, Tumor necrosis factor, Virology, Virus load, Virus replication, Virus transmission, Virus virulence


Guallar-Garrido, S, Almiñana-Rapún, F, Campo-Pérez, V, Torrents, E, Luquin, M, Julián, E, (2022). BCG Substrains Change Their Outermost Surface as a Function of Growth Media Vaccines 10, 40

Mycobacterium bovis bacillus Calmette-Guérin (BCG) efficacy as an immunotherapy tool can be influenced by the genetic background or immune status of the treated population and by the BCG substrain used. BCG comprises several substrains with genetic differences that elicit diverse phenotypic characteristics. Moreover, modifications of phenotypic characteristics can be influenced by culture conditions. However, several culture media formulations are used worldwide to produce BCG. To elucidate the influence of growth conditions on BCG characteristics, five different substrains were grown on two culture media, and the lipidic profile and physico-chemical properties were evaluated. Our results show that each BCG substrain displays a variety of lipidic profiles on the outermost surface depending on the growth conditions. These modifications lead to a breadth of hydrophobicity patterns and a different ability to reduce neutral red dye within the same BCG substrain, suggesting the influence of BCG growth conditions on the interaction between BCG cells and host cells.

JTD Keywords: cell wall, efficacy, glycerol, hydrophobicity, lipid, neutral red, pdim, pgl, protein, strains, viability, virulence, Acylglycerol, Albumin, Article, Asparagine, Bacterial cell wall, Bacterial gene, Bacterium culture, Bcg vaccine, Catalase, Cell wall, Chloroform, Controlled study, Escherichia coli, Gene expression, Genomic dna, Glycerol, Glycerol monomycolate, Hexadecane, Housekeeping gene, Hydrophobicity, Immune response, Immunogenicity, Immunotherapy, Lipid, Lipid fingerprinting, Magnesium sulfate, Mercaptoethanol, Methanol, Methylglyoxal, Molybdatophosphoric acid, Mycobacterium bovis bcg, Neutral red, Nonhuman, Pdim, Petroleum ether, Pgl, Phenotype, Physical chemistry, Real time reverse transcription polymerase chain reaction, Rna 16s, Rna extraction, Rv0577, Staining, Thin layer chromatography, Unclassified drug


Sjoberg, B. M., Torrents, E., (2011). Shift in ribonucleotide reductase gene expression in pseudomonas aeruginosa during infection Infection and Immunity , 79, (7), 2663-2669

The roles of different ribonucleotide reductases (RNRs) in bacterial pathogenesis have not been studied systematically. In this work we analyzed the importance of the different Pseudomonas aeruginosa RNRs in pathogenesis using the Drosophila melanogaster host-pathogen interaction model. P. aeruginosa codes for three different RNRs with different environmental requirements. Class II and III RNR chromosomal mutants exhibited reduced virulence in this model. Translational reporter fusions of RNR gene nrdA, nrdJ, or nrdD to the green fluorescent protein were constructed to measure the expression of each class during the infection process. Analysis of the P. aeruginosa infection by flow cytometry revealed increased expression of nrdJ and nrdD and decreased nrdA expression during the infection process. Expression of each RNR class fits with the pathogenicities of the chromosomal deletion mutants. An extended understanding of the pathogenicity and physiology of P. aeruginosa will be important for the development of novel drugs against infections in cystic fibrosis patients.

JTD Keywords: Broad-host-range, Anaerobic growth, Drosophila-melanogaster, Bacterial biofilms, Escherichia-coli, Cystic-fibrosis, Model host, Virulence, Promoter, Vectors