by Keyword: Secretion
Fernandez-Vazquez, J, Cabrer-Panes, JD, Aberg, A, Juarez, A, Madrid, C, Gaviria-Cantin, T, Fernandez-Coll, L, Vargas-Sinisterra, AF, Jimenez, CJ, Balsalobre, C, (2022). ppGpp, the General Stress Response Alarmone, Is Required for the Expression of the alpha-Hemolysin Toxin in the Uropathogenic Escherichia coli Isolate, J96 International Journal Of Molecular Sciences 23, 12256
ppGpp is an intracellular sensor that, in response to different types of stress, coordinates the rearrangement of the gene expression pattern of bacteria to promote adaptation and survival to new environmental conditions. First described to modulate metabolic adaptive responses, ppGpp modulates the expression of genes belonging to very diverse functional categories. In Escherichia coli, ppGpp regulates the expression of cellular factors that are important during urinary tract infections. Here, we characterize the role of this alarmone in the regulation of the hlyCABD(II) operon of the UPEC isolate J96, encoding the toxin alpha-hemolysin that induces cytotoxicity during infection of bladder epithelial cells. ppGpp is required for the expression of the alpha-hemolysin encoded in hlyCABD(II) by stimulating its transcriptional expression. Prototrophy suppressor mutations in a ppGpp-deficient strain restore the alpha-hemolysin expression from this operon to wild-type levels, confirming the requirement of ppGpp for its expression. ppGpp stimulates hlyCABD(II) expression independently of RpoS, RfaH, Zur, and H-NS. The expression of hlyCABD(II) is promoted at 37 degrees C and at low osmolarity. ppGpp is required for the thermoregulation but not for the osmoregulation of the hlyCABD(II) operon. Studies in both commensal and UPEC isolates demonstrate that no UPEC specific factor is strictly required for the ppGpp-mediated regulation described. Our data further support the role of ppGpp participating in the coordinated regulation of the expression of bacterial factors required during infection.
JTD Keywords: gene regulation, ppgpp, upec, Alpha-hemolysin, Bacterial signal molecule, Determinants, Environmental-regulation, Gene regulation, H-ns, Ppgpp, Protein, Regulator, Rfah, Secretion, Transcription, Upec, Virulence, Α-hemolysin
Ortega, MA, Rodríguez-Comas, J, Velasco-Mallorquí, F, Balaguer-Trias, J, Parra, V, Ramón-Azcón, J, Yavas, O, Quidant, R, Novials, A, Servitja, JM, (2021). In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip Biosensors 11, 138
Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.
JTD Keywords: biosensor, cytoarchitecture, dna hybridization, gelatin, in situ insulin monitoring, langerhans, lspr sensors, microfluidic device, organ-on-a-chip, parallel, platform, scaffold, Animals, Biosensing techniques, Diabetes mellitus, type 2, Drug discovery, Drug evaluation, preclinical, Human pancreatic-islets, Humans, In situ insulin monitoring, Insulin secretion, Insulins, Lab-on-a-chip devices, Lspr sensors, Oligonucleotide array sequence analysis, Organ-on-a-chip, Surface plasmon resonance