by Keyword: acute lung injury

Marhuenda, E, Villarino, A, Narciso, M, Elowsson, L, Almendros, I, Westergren-Thorsson, G, Farre, R, Gavara, N, Otero, J, (2022). Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices Frontiers In Pharmacology 13, 945134

Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, characterized by a highly aberrant inflammatory response. Pre-clinical models to study the effect of cell therapy and anti-inflammatory treatments have not comprehensively reproduced the disease due to its high complexity. This work presents a novel physiomimetic in vitro model for Acute Respiratory Distress Syndrome using lung extracellular matrix-derived hydrogels and organ-on-a-chip devices. Monolayres of primary alveolar epithelial cells were cultured on top of decellullarized lung hydrogels containing primary lung mesenchymal stromal cells. Then, cyclic stretch was applied to mimic breathing, and an inflammatory response was induced by using a bacteriotoxin hit. Having simulated the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory drug (i.e., dexamethasone) by studying the secretion of the most relevant inflammatory cytokines. To better identify key players in our model, the impact of the individual factors (cyclic stretch, decellularized lung hydrogel scaffold, and the presence of mesenchymal stromal cells) was studied separately. Results showed that developed model presented a more reduced inflammatory response than traditional models, which is in line with what is expected from the response commonly observed in patients. Further, from the individual analysis of the different stimuli, it was observed that the use of extracellular matrix hydrogels obtained from decellularized lungs had the most significant impact on the change of the inflammatory response. The developed model then opens the door for further in vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the test of different drugs or cell therapy.

JTD Keywords: Acute lung injury, Alveolar epithelial cells, Ards, Dexamethasone, Epithelial-mesenchymal transition, Extracellular matrix, Extracellular-matrix, Hydrogels, Inflammation, Lung-on-a-chip, Mesenchymal stromal cells, Oxygen, Stem-cells

Falcones B, Sanz-Fraile H, Marhuenda E, Mendizábal I, Cabrera-Aguilera I, Malandain N, Uriarte JJ, Almendros I, Navajas D, Weiss DJ, Farré R, Otero J, (2021). Bioprintable lung extracellular matrix hydrogel scaffolds for 3d culture of mesenchymal stromal cells Polymers 13,

Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.

JTD Keywords: 3d bioprinting, acute lung injury, adhesion, collagen, differentiation, dimension, elastic properties, extracellular matrix, hydrogels, in-vitro, mechanical-properties, mesenchymal stromal cells, microenvironment, potentiate, tissue engineering, 3d bioprinting, Acute lung injury, Extracellular matrix, Hydrogels, Mesenchymal stromal cells, Stem-cells, Tissue engineering

Peñuelas, O., Melo, E., Sánchez, C., Sánchez, I., Quinn, K., Ferruelo, A., Pérez-Vizcaíno, F., Esteban, A., Navajas, D., Nin, N., Lorente, J. A., Farré, R., (2013). Antioxidant effect of human adult adipose-derived stromal stem cells in alveolar epithelial cells undergoing stretch Respiratory Physiology & Neurobiology , 188, (1), 1-8

Introduction: Alveolar epithelial cells undergo stretching during mechanical ventilation. Stretch can modify the oxidative balance in the alveolar epithelium. The aim of the present study was to evaluate the antioxidant role of human adult adipose tissue-derived stromal cells (hADSCs) when human alveolar epithelial cells were subjected to injurious cyclic overstretching. Methods: A549 cells were subjected to biaxial stretch (0-15% change in surface area for 24. h, 0.2. Hz) with and without hADSCs. At the end of the experiments, oxidative stress was measured as superoxide generation using positive nuclear dihydroethidium (DHE) staining, superoxide dismutase (SOD) activity in cell lysates, 8-isoprostane concentrations in supernatant, and 3-nitrotyrosine by indirect immunofluorescence in fixed cells. Results: Cyclically stretching of AECs induced a significant decrease in SOD activity, and an increase in 8-isoprostane concentrations, DHE staining and 3-nitrotyrosine staining compared with non-stretched cells. Treatment with hADSCs significantly attenuated stretch-induced changes in SOD activity, 8-isoprostane concentrations, DHE and 3-nitrotyrosine staining. Conclusion: These data suggest that hADSCs have an anti-oxidative effect in human alveolar epithelial cells undergoing cyclic stretch.

JTD Keywords: Acute lung injury, Cyclic stretch, Human adipose-derived stromal stem cells, Oxidative stress

Chimenti, L., Luque, T., Bonsignore, M. R., Ramirez, J., Navajas, D., Farre, R., (2012). Pre-treatment with mesenchymal stem cells reduces ventilator-induced lung injury European Respiratory Journal 40, (4), 939-948

Bone marrow-derived mesenchymal stem cells (MSCs) reduce acute lung injury in animals challenged by bleomycin or bacterial lipopolysaccaride. It is not known, however, whether MSCs protect from ventilator-induced lung injury (VILI). This study investigated whether MSCs have a potential role in preventing or modulating VILI in healthy rats subjected to high-volume ventilation. 24 Sprague-Dawley rats (250-300 g) were subjected to high-volume mechanical ventilation (25 MSCs (5 x 10(6)) were intravenously or intratracheally administered (n=8 each) 30 min before starting over-ventilation and eight rats were MSC-untreated. Spontaneously breathing anesthetised rats (n=8) served as controls. After 3 h of over-ventilation or control the animals were sacrificed and lung tissue and bronchoalveolar lavage fluid (BALF) were sampled for further analysis. When compared with controls, MSC-untreated over-ventilated rats exhibited typical VILI features. Lung oedema, histological lung injury index, concentrations of total protein, interleukin-1 beta, macrophage inflammatory protein-2 and number of neutrophils in BALF and vascular cell adhesion protein-1 in lung tissue significantly increased in over-ventilated rats. All these indices of VILI moved significantly towards normalisation in the rats treated with MSCs, whether intravenously or intratracheally. Both local and systemic pre-treatment with MSCs reduced VILI in a rat model.

JTD Keywords: Acute lung injury, Cell therapy, Injurious ventilation, Lung inflammation, Lung oedema, Mechanical ventilation