by Keyword: elastic properties
Sauer, F, Grosser, S, Shahryari, M, Hayn, A, Guo, J, Braun, J, Briest, S, Wolf, B, Aktas, B, Horn, LC, Sack, I, Käs, JA, (2023). Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo Advanced Science 10, e2303523
Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
JTD Keywords: brain, cancer, cells, collective migration, elastic energy, elastography, in vivo magnetic resonance elastography, invasion, medical imaging, solid stress, tissue fluidity, tumor mechanics, viscoelastic properties, Cancer, Collagen, Extracellular-matrix, Humans, In vivo magnetic resonance elastography, Medical imaging, Neoplasms, Prognosis, Tissue fluidity, Tumor mechanics, Tumor microenvironment
Noguchi, H, Walani, N, Arroyo, M, (2023). Estimation of anisotropic bending rigidities and spontaneous curvatures of crescent curvature-inducing proteins from tethered-vesicle experimental data Soft Matter 19, 5300-5310
The Bin/amphiphysin/Rvs (BAR) superfamily proteins have a crescent binding domain and bend biomembranes along the domain axis. However, their anisotropic bending rigidities and spontaneous curvatures have not been experimentally determined. Here, we estimated these values from the bound protein densities on tethered vesicles using a mean-field theory of anisotropic bending energy and orientation-dependent excluded volume. The dependence curves of the protein density on the membrane curvature are fitted to the experimental data for the I-BAR and N-BAR domains reported by C. Prevost et al. Nat. Commun., 2015, 6, 8529 and F.-C. Tsai et al. Soft Matter, 2021, 17, 4254-4265, respectively. For the I-BAR domain, all three density curves of different chemical potentials exhibit excellent fits with a single parameter set of anisotropic bending energy. When the classical isotropic bending energy is used instead, one of the curves can be fitted well, but the others exhibit large deviations. In contrast, for the N-BAR domain, two curves are not well fitted simultaneously the anisotropic model, although it is significantly improved compared to the isotropic model. This deviation likely suggests a cluster formation of the N-BAR domains.
JTD Keywords: Membrane-mediated interactions,elastic properties,bar,shape,mechanisms,inclusions,generation,polymers,driven,bod
Falcones, B, Sanz-Fraile, H, Marhuenda, E, Mendizábal, I, Cabrera-Aguilera, I, Malandain, N, Uriarte, JJ, Almendros, I, Navajas, D, Weiss, DJ, Farré, R, Otero, J, (2021). Bioprintable lung extracellular matrix hydrogel scaffolds for 3d culture of mesenchymal stromal cells Polymers 13, 2350
Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.
JTD Keywords: 3d bioprinting, acute lung injury, adhesion, collagen, differentiation, dimension, elastic properties, extracellular matrix, hydrogels, in-vitro, mechanical-properties, mesenchymal stromal cells, microenvironment, potentiate, tissue engineering, 3d bioprinting, Acute lung injury, Extracellular matrix, Hydrogels, Mesenchymal stromal cells, Stem-cells, Tissue engineering
Pegueroles, M., Tonda-Turo, C., Planell, J. A., Gil, F. J., Aparicio, C., (2012). Adsorption of fibronectin, fibrinogen, and albumin on TiO2: Time-resolved kinetics, structural changes, and competition study Biointerphases , 7, (48), 13
An understanding of protein adsorption process is crucial for designing biomaterial surfaces. In this work, with the use of a quartz-crystal microbalance with dissipation monitoring, we researched the following: (a) the kinetics of adsorption on TiO2 surfaces of three extensively described proteins that are relevant for metallic implant integration [i.e., albumin (BSA), fibrinogen (Fbg), and fibronectin (Fn)]; and (b) the competition of those proteins for adsorbing on TiO2 in a two-step experiment consisted of sequentially exposing the surfaces to different monoprotein solutions. Each protein showed a different process of adsorption and properties of the adlayer-calculated using the Voigt model. The competition experiments showed that BSA displaced larger proteins such as Fn and Fbg when BSA was introduced as the second protein in the system, whereas the larger proteins laid on top of BSA forming an adsorbed protein bi-layer when those were introduced secondly in the system.
JTD Keywords: QCM, Human plasma fibronectin, Induced conformational-changes, Von-willebrand-factor, BSA, Protein adsortion, Polymer surfaces, Solid-surfaces, Viscoelastic properties, Globular-proteins