by Keyword: exacerbations

Jonkman, AH, Warnaar, RSP, Baccinelli, W, Carbon, NM, D'Cruz, RF, Doorduin, J, van Doorn, JLM, Elshof, J, Estrada-Petrocelli, L, Grasshoff, J, Heunks, LMA, Koopman, AA, Langer, D, Moore, CM, Silveira, JMN, Petersen, E, Poddighe, D, Ramsay, M, Rodrigues, A, Roesthuis, LH, Rossel, A, Torres, A, Duiverman, ML, Oppersma, E, (2024). Analysis and applications of respiratory surface EMG: report of a round table meeting Critical Care 28, 2

Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.

JTD Keywords: Acute respiratory failure, Artificial ventilation, Asthmatic-children, Breathing muscle, Clinical monitoring, Clinical practice, Clinical research, Consensus development, Data interpretation, Disease exacerbation, Drive, Electrode positioning, Electrode removal, Electromyography, Force, Home care, Human, Human diaphragm, Humans, Information processing, Inspiratory muscle training, Inspiratory muscles, Intensive care unit, Knowledge gap, Long term care, Mechanical ventilation, Medical procedures, Muscle contraction, Muscle fatigue, Muscle function, Muscle training, Muscle, skeletal, Muscle-activity, Noninvasive ventilation, Patient monitoring, Patient-ventilator asynchrony, Physiology, Prognosis, Quality of life, Reporting and data system, Respiratory failure, Respiratory muscles, Review, Severe exacerbations, Signal processing, Skeletal muscle, Standardization, Surface electromyography, Time factor

Lozano-Garcia, M, Estrada-Petrocelli, L, Blanco-Almazan, D, Tas, B, Cho, PSP, Moxham, J, Rafferty, GF, Torres, A, Jane, R, Jolley, CJ, (2022). Noninvasive Assessment of Neuromechanical and Neuroventilatory Coupling in COPD Ieee Journal Of Biomedical And Health Informatics 26, 3385-3396

This study explored the use of parasternal second intercostal space and lower intercostal space surface electromyogram (sEMG) and surface mechanomyogram (sMMG) recordings (sEMGpara and sMMGpara, and sEMGlic and sMMGlic, respectively) to assess neural respiratory drive (NRD), neuromechanical (NMC) and neuroventilatory (NVC) coupling, and mechanical efficiency (MEff) noninvasively in healthy subjects and chronic obstructive pulmonary disease (COPD) patients. sEMGpara, sMMGpara, sEMGlic, sMMGlic, mouth pressure (Pmo), and volume (Vi) were measured at rest, and during an inspiratory loading protocol, in 16 COPD patients (8 moderate and 8 severe) and 9 healthy subjects. Myographic signals were analyzed using fixed sample entropy and normalized to their largest values (fSEsEMGpara%max, fSEsMMGpara%max, fSEsEMGlic%max, and fSEsMMGlic%max). fSEsMMGpara%max, fSEsEMGpara%max, and fSEsEMGlic%max were significantly higher in COPD than in healthy participants at rest. Parasternal intercostal muscle NMC was significantly higher in healthy than in COPD participants at rest, but not during threshold loading. Pmo-derived NMC and MEff ratios were lower in severe patients than in mild patients or healthy subjects during threshold loading, but differences were not consistently significant. During resting breathing and threshold loading, Vi-derived NVC and MEff ratios were significantly lower in severe patients than in mild patients or healthy subjects. sMMG is a potential noninvasive alternative to sEMG for assessing NRD in COPD. The ratios of Pmo and Vi to sMMG and sEMG measurements provide wholly noninvasive NMC, NVC, and MEff indices that are sensitive to impaired respiratory mechanics in COPD and are therefore of potential value to assess disease severity in clinical practice. Author

JTD Keywords: biomedical measurement, chronic obstructive pulmonary disease, couplings, diaphragm, disease severity, efficiency, electromyography, exacerbations, healthy volunteers, inspiratory muscles, loading, mechanomyography, obstructive pulmonary-disease, pressure measurement, protocols, respiratory mechanics, respiratory muscles, responsiveness, spirometry, stimulation, volume measurement, At rests, Biomedical measurement, Biomedical measurements, Chronic obstructive pulmonary disease, Couplings, Disease severity, Efficiency ratio, Electromyography, Healthy subjects, Healthy volunteers, Loading, Mechanical efficiency, Mechanomyogram, Muscle, Muscles, Neural respiratory drive, Noninvasive medical procedures, Pressure measurement, Protocols, Pulmonary diseases, Surface electromyogram, Volume measurement

Tas, B, Kalk, NJ, Lozano-García, M, Rafferty, GF, Cho, PSP, Kelleher, M, Moxham, J, Strang, J, Jolley, CJ, (2022). Undetected Respiratory Depression in People with Opioid Use Disorder Drug And Alcohol Dependence 234, 109401

Background: Opioid-related deaths are increasing globally. Respiratory complications of opioid use and underlying respiratory disease in people with Opioid Use Disorder (OUD) are potential contributory factors. Individual variation in susceptibility to overdose is, however, incompletely understood. This study investigated the prevalence of respiratory depression (RD) in OUD treatment and compared this to patients with chronic obstructive pulmonary disease (COPD) of equivalent severity. We also explored the contribution of opioid agonist treatment (OAT) dosage, and type, to the prevalence of RD. Methods: There were four groups of participants: 1) OUD plus COPD (‘OUD-COPD’, n = 13); 2) OUD without COPD (‘OUD’, n = 7); 3) opioid-naïve COPD patients (‘COPD'n = 13); 4) healthy controls (‘HC'n = 7). Physiological indices, including pulse oximetry (SpO2%), end-tidal CO2 (ETCO2), transcutaneous CO2 (TcCO2), respiratory airflow and second intercostal space parasternal muscle electromyography (EMGpara), were recorded continuously over 40 min whilst awake at rest. Significant RD was defined as: SpO2%< 90% for > 10 s, ETCO2 per breath > 6.6 kPa, TcCO2 overall mean > 6 kPa, respiratory pauses > 10 s Results: At least one indicator was observed in every participant with OUD (n = 20). This compared to RD episode occurrence in only 2/7 HC and 2/13 COPD participants (p < 0.05,Fisher's exact test). The occurrence of RD was similar in OUD participants prescribed methadone (n = 6) compared to those prescribed buprenorphine (n = 12). Conclusions: Undetected RD is common in OUD cohorts receiving OAT and is significantly more severe than in opioid-naïve controls. RD can be assessed using simple objective measures. Further studies are required to determine the association between RD and overdose risk. © 2022 Elsevier B.V.

JTD Keywords: buprenorphine, comorbidity, deaths, drive, heroin, lung disease, opioid substitution treatment, opioids, overdose, pulse oximetry, respiratory depression, risk, Acute exacerbations, Comorbidity, Lung disease, Opioid substitution treatment, Opioids, Overdose, Respiratory depression