DONATE

Publications

by Keyword: extreme sport

Rubies, C, Batlle, M, Sanz-de la Garza, M, Dantas, AP, Jorba, I, Fernandez, G, Sanguesa, G, Abuli, M, Brugada, J, Sitges, M, Navajas, D, Mont, L, Guasch, E, (2022). Long-Term Strenuous Exercise Promotes Vascular Injury by Selectively Damaging the Tunica Media Experimental Evidence Jacc Basic Transl Sci 7, 681-693

Moderate exercise has well-founded benefits in cardiovascular health. However, increasing, yet controversial, evidence suggests that extremely trained athletes may not be protected from cardiovascular events as much as moderately trained individuals. In our rodent model, intensive but not moderate training promoted aorta and carotid stiffening and elastic lamina ruptures, tunica media thickening of intramyocardial arteries, and an imbalance between vasoconstrictor and relaxation agents. An up-regulation of angiotensin-converter enzyme, miR-212, miR-132, and miR-146b might account for this deleterious remodeling. Most changes remained after a 4-week detraining. In conclusion, our results suggest that intensive training blunts the benefits of moderate exercise. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.

JTD Keywords: atherosclerosis, cacs, coronary artery calcium score, cad, coronary artery disease, coronary artery disease, cv, cardiovascular, endurance exercise, extreme sport, mmp9, matrix metalloproteinase 9, no, nitric oxide, phe, phenylephrine, vsmc, vascular smooth muscle cell, Age, Atherosclerosis, Cacs, coronary artery calcium score, Cad, coronary artery disease, Coronary artery disease, Coronary atherosclerosis, Cv, cardiovascular, Disease, Endurance exercise, Extreme sport, Metalloproteinases, Micrornas, Mmp9, matrix metalloproteinase 9, No, nitric oxide, Phe, phenylephrine, Physical-activity, Prevalence, Rats, Relevance, Risk, Vascular stiffening, Vsmc, vascular smooth muscle cell