by Keyword: gene therapy

Varea, Olga, Guinovart, Joan J, Duran, Jordi, (2022). Malin restoration as proof of concept for gene therapy for Lafora disease Brain Commun 4, fcac168

Abstract Lafora disease is a fatal neurodegenerative childhood dementia caused by loss-of-function mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of abnormal glycogen aggregates known as Lafora bodies (LBs) in the brain and other tissues. These aggregates are responsible for the pathological features of the disease. As a monogenic disorder, Lafora disease is a good candidate for gene therapy-based approaches. However, most patients are diagnosed after the appearance of the first symptoms and thus when LBs are already present in the brain. In this context, it was not clear whether the restoration of a normal copy of the defective gene (either laforin or malin) would prove effective. Here we evaluated the effect of restoring malin in a malin-deficient mouse model of Lafora disease as a proof of concept for gene replacement therapy. To this end, we generated a malin-deficient mouse in which malin expression can be induced at a certain time. Our results reveal that malin restoration at an advanced stage of the disease arrests the accumulation of LBs in brain and muscle, induces the degradation of laforin and glycogen synthase bound to the aggregates, and ameliorates neuroinflammation. These results identify malin restoration as the first therapeutic strategy to show effectiveness when applied at advanced stages of Lafora disease.

JTD Keywords: accumulation, gene therapy, glycogen, lafora disease, neurodegeneration, neuroinflammation, neurons, targets, Carbohydrate-binding domain, Glycogen

Navarro, S., Moleiro, V., Molina-Estevez, F. J., Lozano, M. L., Chinchon, R., Almarza, E., Quintana-Bustamante, O., Mostoslavsky, G., Maetzig, T., Galla, M., Heinz, N., Schiedlmeier, B., Torres, Y., Modlich, U., Samper, E., Río, P., Segovia, J. C., Raya, A., Güenechea, G., Izpisua-Belmonte, J. C., Bueren, J. A., (2014). Generation of iPSCs from genetically corrected Brca2 hypomorphic cells: Implications in cell reprogramming and stem cell therapy Stem Cells , 32, (2), 436-446

Fanconi anemia (FA) is a complex genetic disease associated with a defective DNA repair pathway known as the FA pathway. In contrast to many other FA proteins, BRCA2 participates downstream in this pathway and has a critical role in homology-directed recombination (HDR). In our current studies, we have observed an extremely low reprogramming efficiency in cells with a hypomorphic mutation in Brca2 (Brca2Δ27/Δ27), that was associated with increased apoptosis and defective generation of nuclear RAD51 foci during the reprogramming process. Gene complementation facilitated the generation of Brca2Δ27/Δ27 induced pluripotent stem cells (iPSCs) with a disease-free FA phenotype. Karyotype analyses and comparative genome hybridization arrays of complemented Brca2Δ27/Δ27 iPSCs showed, however, the presence of different genetic alterations in these cells, most of which were not evident in their parental Brca2 Δ27/Δ27 mouse embryonic fibroblasts. Gene-corrected Brca2Δ27/Δ27 iPSCs could be differentiated in vitro toward the hematopoietic lineage, although with a more limited efficacy than WT iPSCs or mouse embryonic stem cells, and did not engraft in irradiated Brca2Δ27/Δ27 recipients. Our results are consistent with previous studies proposing that HDR is critical for cell reprogramming and demonstrate that reprogramming defects characteristic of Brca2 mutant cells can be efficiently overcome by gene complementation. Finally, based on analysis of the phenotype, genetic stability, and hematopoietic differentiation potential of gene-corrected Brca2Δ27/Δ27 iPSCs, achievements and limitations in the application of current reprogramming approaches in hematopoietic stem cell therapy are also discussed.

JTD Keywords: Bone marrow aplasia, Cellular therapy, Fanconi anemia, Gene therapy, Hematopoietic stem cells, Induced pluripotent stem cells