DONATE

Publications

by Keyword: lactate

Pala, M, El Khannaji, H, Garay-Sarmiento, M, Ronda, JC, Cadiz, V, Galia, M, Percec, V, Rodriguez-Emmenegger, C, Lligadas, G, (2022). A green solvent-to-polymer upgrading approach to water-soluble LCST poly(N-substituted lactamide acrylate)s Green Chemistry 24, 8314-8323

We report a green solvent-to-polymer upgrading transformation of chemicals of the lactic acid portfolio into water-soluble lower critical solution temperature (LCST)-type acrylic polymers. Aqueous Cu(0)-mediated living radical polymerization (SET-LRP) was utilized for the rapid synthesis of N-substituted lactamide-type homo and random acrylic copolymers under mild conditions. A particularly unique aspect of this work is that the water-soluble monomers and the SET-LRP initiator used to produce the corresponding polymers were synthesized from biorenewable and non-toxic solvents, namely natural ethyl lactate and BASF's Agnique (R) AMD 3L (N,N-dimethyl lactamide, DML). The pre-disproportionation of Cu(I) Br in the presence of tris[2-(dimethylamino)ethyl]amine (Me6TREN) in water generated nascent Cu(0) and Cu(II) complexes that facilitated the fast polymerization of N-tetrahydrofurfuryl lactamide and N,N-dimethyl lactamide acrylate monomers (THFLA and DMLA, respectively) up to near-quantitative conversion with excellent control over molecular weight (5000 < M-n < 83 000) and dispersity (1.05 < D < 1.16). Interestingly, poly(THFLA) showed a degree of polymerization and concentration dependent LCST behavior, which can be fine-tuned (T-cp = 12-62 degrees C) through random copolymerization with the more hydrophilic DMLA monomer. Finally, covalent cross-linking of these polymers resulted in a new family of thermo-responsive hydrogels with excellent biocompatibility and tunable swelling and LCST transition. These illustrate the versatility of these neoteric green polymers in the preparation of smart and biocompatible soft materials.

JTD Keywords: Acid, Ethyl lactate, Living radical polymerization, Monomers, Pnipam, Reductive amination, Ruthenium nanoparticles, Set-lrp, Single, Thermoresponsive polymers


Ordoño J, Pérez-Amodio S, Ball K, Aguirre A, Engel E, (2022). The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes Biomaterials Advances 139, 213035

In situ tissue engineering strategies are a promising approach to activate the endogenous regenerative potential of the cardiac tissue helping the heart to heal itself after an injury. However, the current use of complex reprogramming vectors for the activation of reparative pathways challenges the easy translation of these therapies into the clinic. Here, we evaluated the response of mouse neonatal and human induced pluripotent stem cell-derived cardiomyocytes to the presence of exogenous lactate, thus mimicking the metabolic environment of the fetal heart. An increase in cardiomyocyte cell cycle activity was observed in the presence of lactate, as determined through Ki67 and Aurora-B kinase. Gene expression and RNA-sequencing data revealed that cardiomyocytes incubated with lactate showed upregulation of BMP10, LIN28 or TCIM in tandem with downregulation of GRIK1 or DGKK among others. Lactate also demonstrated a capability to modulate the production of inflammatory cytokines on cardiac fibroblasts, reducing the production of Fas, Fraktalkine or IL-12p40, while stimulating IL-13 and SDF1a. In addition, the generation of a lactate-rich environment improved ex vivo neonatal heart culture, by affecting the contractile activity and sarcomeric structures and inhibiting epicardial cell spreading. Our results also suggested a common link between the effect of lactate and the activation of hypoxia signaling pathways. These findings support a novel use of lactate in cardiac tissue engineering, modulating the metabolic environment of the heart and thus paving the way to the development of lactate-releasing platforms for in situ cardiac regeneration.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

JTD Keywords: cardiac regeneration, cardiac tissue engineering, cell cycle, failure, growth, heart regeneration, induced pluripotent stem cells, ischemia, lactate, metabolic environment, metabolism, mouse, proliferation, repair, Bone morphogenetic protein-10, Cardiac tissue engineering, Cardiomyocytes, Cell cycle, Induced pluripotent stem cells, Lactate, Metabolic environment


Babeli I, Puiggalí-Jou A, Roa JJ, Ginebra M-P, García-Torres J, Alemán C, (2021). Hybrid conducting alginate-based hydrogel for hydrogen peroxide detection from enzymatic oxidation of lactate International Journal Of Biological Macromolecules 193, 1237-1248

A conducting nanocomposite hydrogel is developed for the detection of L-lactate. The hydrogel is based on a mixture of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which is loaded with gold nanoparticles (GNP). In this novel hydrogel, Alg provides 3D structural support and flexibility, PEDOT confers conductivity and sensing capacity, and GNP provides signal amplification with respect to simple voltammetric and chronoamperometric response. The synergistic combination of the properties provided by each component results in a new flexible nanocomposite with outstanding capacity to detect hydrogen peroxide, which has been used to detect the oxidation of L-lactate. The hydrogel detects hydrogen peroxide with linear response and limits of detection of 0.91 ?M and 0.02 ?M by cyclic voltammetry and chronoamperometry, respectively. The hydrogel is functionalized with lactate oxidase, which catalyzes the oxidation of L-lactate to pyruvate, forming hydrogen peroxide. For L-lactate detection, the functionalized biosensor works in two linear regimes, one for concentrations lower than 5 mM with a limit of detection of 0.4 mM, and the other for concentrations up to 100 mM with a limit of detection of 3.5 mM. Because of its linear range interval, the developed biosensor could be suitable for a wide number of biological fluids. © 2021

JTD Keywords: biosensor, dehydrogenase, enzymatic oxidation, films, hardness, indentation, lactate oxidase, Biosensor, Elastic-modulus, Enzymatic oxidation, Lactate, Lactate oxidase, Reacciones enzimáticas


Dulay S, Rivas L, Miserere S, Pla L, Berdún S, Parra J, Eixarch E, Gratacós E, Illa M, Mir M, Samitier J, (2021). in vivo Monitoring with micro-implantable hypoxia sensor based on tissue acidosis Talanta 226

© 2020 Elsevier B.V. Hypoxia is a common medical problem, sometimes difficult to detect and caused by different situations. Control of hypoxia is of great medical importance and early detection is essential to prevent life threatening complications. However, the few current methods are invasive, expensive, and risky. Thus, the development of reliable and accurate sensors for the continuous monitoring of hypoxia is of vital importance for clinical monitoring. Herein, we report an implantable sensor to address these needs. The developed device is a low-cost, miniaturised implantable electrochemical sensor for monitoring hypoxia in tissue by means of pH detection. This technology is based on protonation/deprotonation of polypyrrole conductive polymer. The sensor was optimized in vitro and tested in vivo intramuscularly and ex vivo in blood in adult rabbits with respiration-induced hypoxia and correlated with the standard device ePOCTM. The sensor demonstrated excellent sensitivity and reproducibility; 46.4 ± 0.4 mV/pH in the pH range of 4–9 and the selectivity coefficient exhibited low interference activity in vitro. The device was linear (R2 = 0.925) with a low dispersion of the values (n = 11) with a cut-off of 7.1 for hypoxia in vivo and ex vivo. Statistics with one-way ANOVA (α = 0.05), shows statistical differences between hypoxia and normoxia states and the good performance of the pH sensor, which demonstrated good agreement with the standard device. The sensor was stable and functional after 18 months. The excellent results demonstrated the feasibility of the sensors in real-time monitoring of intramuscular tissue and blood for medical applications.

JTD Keywords: biocompatibility, blood-flow, clinical monitoring, electrochemical biosensor, electrodes, hypoxia, implantable sensor, in vivo tissue monitoring, ischemia, lactate, ph, ph sensor, rabbits, responses, vitro, Clinical monitoring, Dual signal outputs, Hypoxia, Implantable sensor, In vivo tissue monitoring, Ischemia, Ph sensor


Blaya, D, Pose, E, Coll, M, Lozano, JJ, Graupera, I, Schierwagen, R, Jansen, C, Castro, P, Fernandez, S, Sidorova, J, Vasa-Nicotera, M, Sola, E, Caballeria, J, Trebicka, J, Gines, P, Sancho-Bru, P, (2021). Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure Jhep Rep 3,

Background & Aims: MicroRNAs (miRNAs) circulate in several body fluids and can be useful biomarkers. The aim of this study was to identify blood-circulating miRNAs associated with cirrhosis progression and acute-on-chronic liver failure (ACLF). Methods: Using high-throughput screening of 754 miRNAs, serum samples from 45 patients with compensated cirrhosis, decompensated cirrhosis, or ACLF were compared with those from healthy individuals (n = 15). miRNA levels were correlated with clinical parameters, organ failure, and disease progression and outcome. Dysregulated miRNAs were evaluated in portal and hepatic vein samples (n = 33), liver tissues (n = 17), and peripheral blood mononuclear cells (PBMCs) (n = 16). Results: miRNA screening analysis revealed that circulating miRNAs are dysregulated in cirrhosis progression, with 51 miRNAs being differentially expressed among all groups of patients. Unsupervised clustering and principal component analysis indicated that the main differences in miRNA expression occurred at decompensation, showing similar levels in patients with decompensated cirrhosis and those with ACLF. Of 43 selected miRNAs examined for differences among groups, 10 were differentially expressed according to disease progression. Moreover, 20 circulating miRNAs were correlated with model for end-stage liver disease and Child-Pugh scores. Notably, 11 dysregulated miRNAs were associated with kidney or liver failure, encephalopathy, bacterial infection, and poor outcomes. The most severely dysregulated miRNAs (i.e. miR-146a5p, miR-26a-5p, and miR-191-5p) were further evaluated in portal and hepatic vein blood and liver tissue, but showed no differences. However, PBMCs from patients with cirrhosis showed significant downregulation of miR-26 and miR-146a, suggesting a extrahepatic origin of some circulating miRNAs. Conclusions: This study is a repository of circulating miRNA data following cirrhosis progression and ACLF. Circulating miRNAs were profoundly dysregulated during the progression of chronic liver disease, were associated with failure of several organs and could have prognostic utility. Lay summary: Circulating miRNAs are small molecules in the blood that can be used to identify or predict a clinical condition. Our study aimed to identify miRNAs for use as biomarkers in patients with cirrhosis or acute-on-chronic liver failure. Several miRNAs were found to be dysregulated during the progression of disease, and some were also related to organ failure and disease-related outcomes. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL).

JTD Keywords: aclf, acute-on-chronic liver failure, alt, alanine aminotransferase, ast, aspartate aminotransferase, biomarkers, chronic liver disease, cxcl10, c-x-c motif chemokine ligand 10, ef clif, european foundation for the study of chronic liver failure, foxo, forkhead box o, inr, international normalised ratio, ldh, lactate dehydrogenase, liver decompensation, mapk, mitogen-activated protein kinase, meld, model for end-stage liver disease, nash, non-alcoholic steatohepatitis, non-coding rnas, pbmcs, peripheral blood mononuclear cells, pca, principal component analysis, tgf, transforming growth factor, tips, transjugular intrahepatic portosystemic shunt, Biomarkers, Chronic liver disease, Expression, Liver decompensation, Markers, Mir-146a, Non-coding rnas, Qpcr, quantitative pcr


Álvarez, Z., Castaño, O., Castells, A. A., Mateos-Timoneda, M. A., Planell, J. A., Engel, E., Alcántara, S., (2014). Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold Biomaterials 35, (17), 4769-4781

Regenerative medicine strategies to promote recovery following traumatic brain injuries are currently focused on the use of biomaterials as delivery systems for cells or bioactive molecules. This study shows that cell-free biomimetic scaffolds consisting of radially aligned electrospun poly-l/dl lactic acid (PLA70/30) nanofibers release l-lactate and reproduce the 3D organization and supportive function of radial glia embryonic neural stem cells. The topology of PLA nanofibers supports neuronal migration while l-lactate released during PLA degradation acts as an alternative fuel for neurons and is required for progenitor maintenance. Radial scaffolds implanted into cavities made in the postnatal mouse brain fostered complete implant vascularization, sustained neurogenesis, and allowed the long-term survival and integration of the newly generated neurons. Our results suggest that the endogenous central nervous system is capable of regeneration through the invivo dedifferentiation induced by biophysical and metabolic cues, with no need for exogenous cells, growth factors, or genetic manipulation.

JTD Keywords: Lactate, Nanofibers, Neural stem cells, Neurogenesis, Regeneration, Vascularization


Álvarez, Zaida, Mateos-Timoneda, Miguel A., Hyrossová, Petra, Castaño, Oscar, Planell, Josep A., Perales, José C., Engel, Elisabeth, Alcántara, Soledad, (2013). The effect of the composition of PLA films and lactate release on glial and neuronal maturation and the maintenance of the neuronal progenitor niche Biomaterials 34, (9), 2221-2233

To develop tissue engineering strategies useful for repairing damage in the central nervous system (CNS) it is essential to design scaffolds that emulate the NSC niche and its tight control of neural cell genesis, growth, and differentiation. In this study we tested two types of poly l/dl lactic acid (PLA95/5 and PLA70/30), a biodegradable material permissive for neural cell adhesion and growth, as materials for nerve regeneration. Both PLA were slightly hydrophobic and negatively charged but differed in crystallinity, stiffness and degradation rate. PLA95/5 films were highly crystalline, stiff (GPa), and did not degrade significantly in the one-month period analyzed in culture. In contrast, PLA70/30 films were more amorphous, softer (MPa) and degraded faster, releasing significant amounts of lactate into the culture medium. PLA70/30 performs better than PLA95/5 for primary cortical neural cell adhesion, proliferation and differentiation, maintaining the pools of neuronal and glial progenitor cells in vitro. l-lactate in the medium recapitulated PLA70/30's maintenance of neuronal restricted progenitors but did not sustain bipotential or glial restricted progenitors in the cultures, as occurred when neural cells were grown on PLA70/30. Our results suggest that PLA70/30 may mimic some of the physical and biochemical characteristics of the NSC niche. Its mechanical and surface properties may act synergistically in the modulation of bipotential and glial restricted progenitor phenotypes, while it is l-lactate, either added to the medium or released by the film that drives the maintenance of neuronal restricted progenitor cell phenotypes.

JTD Keywords: Polylactic acid, Degradation, Neurons, Progenitors, Lactate, Glial cells, NSC niche