DONATE

Publications

by Keyword: biosensor

Murugan, Divagar, Tintelott, Marcel, Narayanan, Madaboosi S, Vu, Xuan-Thang, Kurkina, Tetiana, Rodriguez-Emmenegger, Cesar, Schwaneberg, Ulrich, Dostalek, Jakub, Ingebrandt, Sven, Pachauri, Vivek, (2024). Recent Advances in Grating Coupled Surface Plasmon Resonance Technology Advanced Optical Materials , 2401862

Surface plasmon resonance (SPR) is a key technique in developing sensor platforms for clinical diagnostics, drug discovery, food quality, and environmental monitoring applications. While prism-coupled (Kretschmann) SPR remains a "gold-standard" for laboratory work-flows due to easier fabrication, handling and high through put, other configurations such as grating-coupled SPR (GC-SPR) and wave-guide mode SPR are yet to fulfil their technology potential. This work evaluates the technical aspects influencing the performance of GC-SPR and reviews recent progress in the fabrication of such platforms. In principle, the GC-SPR involves the illumination of the plasmonic metal film with periodic gratings to excite the surface plasmons (SP) via diffraction-based phase matching. The real performance of the GC-SPR is, however, heavily influenced by the topography of the grating structures produced via top-down lithography techniques. This review discusses latest in approaches to achieve consistent plasmonic gratings with uniform features and periodicity over a large scale and explores the choice of plasmon-active and substrate material for enhanced performance. The review also provides insights into the different GC-SPR measurement configurations and highlights on opportunities with their potential applications as biosensors with translational capabilities. A review on recent progress in the realization of grating-coupled and wave-guide mode surface plasmon resonance (SPR) platforms which have seen very limited progress toward diagnostics applications in comparison to Kretchmann configured SPR. Sophisticated topography manipulation during large-area nanofabrication, integration of emerging nanomaterials, and machine learning-based data analytics are expected to overcome concurrent challenges toward clinical adoption of grating-coupled SPR in coming years. image

JTD Keywords: Aluminum, Biosensor, Chemical sensor, Compact, Fabrication methods, Gc-spr, Gold, Lase, Lithography, Nanogratings, Performance, Plasmonics, Sensitivity enhancement, Sp, Spr sensor


Colombi, Samuele, Saez, Isabel, Borras, Nuria, Estrany, Francesc, Perez-Madrigal, Maria M, Garcia-Torres, Jose, Morgado, Jorge, Aleman, Carlos, (2024). Glyoxal crosslinking of electro-responsive alginate-based hydrogels: Effects on the properties Carbohydrate Polymers 337, 122170

To improve the features of alginate-based hydrogels in physiological conditions, Ca2+-crosslinked 2 +-crosslinked semi interpenetrated hydrogels formed by poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid and alginate (PEDOT/Alg) were subjected to a treatment with glyoxal to form a dual ionic/covalent network. The covalent network density was systematically varied by considering different glyoxalization times (tG). t G ). The content of Ca2+ was significantly higher for the untreated hydrogel than for the glyoxalized ones, while the properties of the hydrogels were found to largely depend on t G . The porosity and swelling capacity decreased with increasing while the stiffness and electrical conductance retention capacity increased with t G . The potentiodynamic response of the hydrogels notably depended on the amount of conformational restraints introduced by the glyoxal, which is a very short crosslinker. Thus, the re-accommodation of the polymer chains during the cyclic potential scans became more difficult with increasing number of covalent crosslinks. This information was used to improve the performance of untreated PEDOT/Alg as electrochemical sensor of hydrogen peroxide by simply applying a tG G of 5 min. Overall, the control of the properties of glyoxalized hydrogels through tG G is very advantageous and can be used as an on-demand strategy to improve the performance of such materials depending on the application.

JTD Keywords: 4-ethylenedioxythiophene), Acid, Behavior, Cell, Conducting hydrogels, Dual networ, Electrochemical biosensor, Fabrication, Gel, Linke, Microspheres, Peroxidase, Poly(3, Polyvinyl-alcohol, Semi-interpenetrated hydrogel


Resina, L, Alemán, C, Ferreira, FC, Esteves, T, (2023). Protein-imprinted polymers: How far have "plastic antibodies" come? Biotechnology Advances 68, 108220

Antibodies are highly selective and sensitive, making them the gold standard for recognition affinity tools. However, their production cost is high and their downstream processing is time-consuming. Molecularly imprinted polymers (MIPs) are tailor-made by incorporating specific molecular recognition sites in their structure, thus translating into receptor-like activity mode of action. The interest in molecular imprinting technology, applied to biomacromolecules, has increased in the past decade. MIPs, produced using biomolecules as templates, commonly referred to as "plastic antibodies" or "artificial receptors", have been considered as suitable cheaper and easy to produce alternatives to antibodies. Research on MIPs, designed to recognize proteins or peptides is particularly important, with potential contributions towards biomedical applications, namely biosensors and targeted drug delivery systems. This mini review will cover recent advances on (bio)molecular imprinting technology, where proteins or peptides are targeted or mimicked for sensing and therapeutic applications. Polymerization methods are reviewed elsewhere, being out of the scope of this review. Template selection and immobilization approaches, monomers and applications will be discussed, highlighting possible drawbacks and gaps in research.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: artificial antibodies, assay, biomimetics, biomolecules, biosensors, delivery, diagnostics, drug delivery, electrochemical detection, nanoparticles, receptors, science-and-technology, selective recognition, selective targeting, separation, templates, Artificial antibodies, Biomimetics, Biomolecules, Biosensors, Diagnostics, Drug delivery, Molecularly imprinted polymers, Nanoparticles, Selective targeting, Solid-phase synthesis


Fernández-Costa, JM, Ortega, MA, Rodríguez-Comas, J, Lopez-Muñoz, G, Yeste, J, Mangas-Florencio, L, Fernández-González, M, Martin-Lasierra, E, Tejedera-Villafranca, A, Ramon-Azcon, J, (2023). Training-on-a-Chip: A MultiOrgan Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro Advanced Materials Technologies 8, 2200873

De Lama-Odría, MD, del Valle, LJ, Puiggalí, J, (2023). Lanthanides-Substituted Hydroxyapatite for Biomedical Applications International Journal Of Molecular Sciences 24, 3446

Lately, there has been an increasing demand for materials that could improve tissue regenerative therapies and provide antimicrobial effects. Similarly, there is a growing need to develop or modify biomaterials for the diagnosis and treatment of different pathologies. In this scenario, hydroxyapatite (HAp) appears as a bioceramic with extended functionalities. Nevertheless, there are certain disadvantages related to the mechanical properties and lack of antimicrobial capacity. To circumvent them, the doping of HAp with a variety of cationic ions is emerging as a good alterative due to the different biological roles of each ion. Among many elements, lanthanides are understudied despite their great potential in the biomedical field. For this reason, the present review focuses on the biological benefits of lanthanides and how their incorporation into HAp can alter its morphology and physical properties. A comprehensive section of the applications of lanthanides-substituted HAp nanoparticles (HAp NPs) is presented to unveil the potential biomedical uses of these systems. Finally, the need to study the tolerable and non-toxic percentages of substitution with these elements is highlighted.

JTD Keywords: biolabeling, biomedicine, biosensors, bone regeneration, calcium, cancer treatment, cationic ions, cell imaging, cerium, doped hap, hydroxyapatite, implants, in-vitro bioactivity, lanthanides-substitutions, lanthanidessubstitutions, nanoparticles, radiation synovectomy, sm-153 particulate hydroxyapatite, structural-characterization, theragnostics, theranostic nanoplatforms, Europium-doped hydroxyapatite, Hydroxyapatite, Theragnostics


Ugarte-Orozco, MJ, Lopez-Munoz, GA, Antonio-Perez, A, Esquivel-Ortiz, KM, Ramon-Azcon, J, (2023). High-throughput biointerfaces for direct, label-free, and multiplexed metaplasmonic biosensing Current Research In Biotechnology 5, 100119

In recent years, metaplasmonic biosensors have emerged as a novel counterpart of well-established plasmonic biosensors based on thin metallic layers. Metaplasmonic biosensors offer high potential for sensor miniaturiza-tion, extreme sensitivity biosensing, and high multiplexing capabilities with detection methods free of coupling optical elements. These capabilities make metaplasmonic biosensors highly attractive for Point-of-Care and handled/portable devices or novel On-Chip devices; as a result, it has increased the number of prototypes and potential applications that emerged during the last years. One of the main challenges to achieving fully operative devices is the achievement of high-throughput biointerfaces for sensitive and selective biodetection in complex media. Despite the superior surface sensitivity achieved by metaplasmonic sensors compared to conventional plasmonic sensors based on metallic thin films, the main limitations to achieving high-throughput and multiplexed biosensing usually are associated with the sensitivity and selectivity of the bioin-terface and, as a consequence, their application to the direct analysis of real complex samples. This graphical review discusses the potential challenges and capabilities of different biofunctionalization strategies, biorecog-nition elements, and antifouling strategies to achieve scalable and high-throughput metaplasmonic biosensing for Point-of-Care devices and bioengineering applications like Organs-On-Chip.

JTD Keywords: Biointerfaces, Biosensing, Biosensors, Cell culture monitoring, Metaplasmonic, Nanoplasmonic, Organ-on-chip, Point-of-care


Riera, R, Archontakis, E, Cremers, G, de Greef, T, Zijlstra, P, Albertazzi, L, (2023). Precision and Accuracy of Receptor Quantification on Synthetic and Biological Surfaces Using DNA-PAINT Acs Sensors 8, 80-93

Characterization of the number and distribution of biological molecules on 2D surfaces is of foremost importance in biology and biomedicine. Synthetic surfaces bearing recognition motifs are a cornerstone of biosensors, while receptors on the cell surface are critical/vital targets for the treatment of diseases. However, the techniques used to quantify their abundance are qualitative or semi-quantitative and usually lack sensitivity, accuracy, or precision. Detailed herein a simple and versatile workflow based on super-resolution microscopy (DNA-PAINT) was standardized to improve the quantification of the density and distribution of molecules on synthetic substrates and cell membranes. A detailed analysis of accuracy and precision of receptor quantification is presented, based on simulated and experimental data. We demonstrate enhanced accuracy and sensitivity by filtering out non-specific interactions and artifacts. While optimizing the workflow to provide faithful counting over a broad range of receptor densities. We validated the workflow by specifically quantifying the density of docking strands on a synthetic sensor surface and the densities of PD1 and EGF receptors (EGFR) on two cellular models.

JTD Keywords: binding, biosensors, cancer, expression, kinetics, localization microscopy, quantification, receptors, single-molecule, super-resolution microscopy, Biosensors, Dna-paint, Quantification, Receptors, Single-molecule, Super-resolution microscopy, Superresolution microscopy


Joseph, A, Wagner, AM, Garay-Sarmiento, M, Aleksanyan, M, Haraszti, T, Söder, D, Georgiev, VN, Dimova, R, Percec, V, Rodriguez-Emmenegger, C, (2022). Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes Advanced Materials 34, e2206288

Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, we introduce a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

JTD Keywords: biological-membranes, bottom-up synthetic biology, chain, hybrid vesicles, hydroethidine, organization, polymersome, proteins, stability, synthetic cells, thickness, vesicle fusion, vesicle motility, vesicles, zwitterionic dendrimersomes, Biosensor, Biosensors, Bottom-up synthetic biology, Hybrid vesicles, Lipid-bilayers, Synthetic cells, Vesicle fusion, Vesicle motility, Zwitterionic dendrimersomes


Riedelová, Z, Pereira, AD, Svoboda, J, Pop-Georgievski, O, Májek, P, Pecánková, K, Dycka, F, Rodriguez-Emmenegger, C, Riedel, T, (2022). The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes Macromolecular Bioscience 22, 2200247

Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.

JTD Keywords: antifouling surfaces, biosensor, blood-plasma, coagulation, coatings, compatibility, glycoprotein, hemocompatibility, identification, methacrylate), ms identification, polymer brushes, protein adsorption, surface-chemistry, Antifouling surfaces, High-density-lipoprotein, Protein adsorption


Mughal, S, Lopez-Munoz, GA, Fernandez-Costa, JM, Cortes-Resendiz, A, De Chiara, F, Ramon-Azcon, J, (2022). Organs-on-Chips: Trends and Challenges in Advanced Systems Integration Advanced Materials Interfaces 9,

Organ-on-chip platforms combined with high-throughput sensing technology allow bridging gaps in information presented by 2D cultures modeled on static microphysiological systems. While these platforms do not aim to replicate whole organ systems with all physiological nuances, they try to mimic relevant structural, physiological, and functional features of organoids and tissues to best model disease and/or healthy states. The advent of this platform has not only challenged animal testing but has also presented the opportunity to acquire real-time, high-throughput data about the pathophysiology of disease progression by employing biosensors. Biosensors allow monitoring of the release of relevant biomarkers and metabolites as a result of physicochemical stress. It, therefore, helps conduct quick lead validation to achieve personalized medicine objectives. The organ-on-chip industry is currently embarking on an exponential growth trajectory. Multiple pharmaceutical and biotechnology companies are adopting this technology to enable quick patient-specific data acquisition at substantially low costs.

JTD Keywords: A-chip, Biosensor, Biosensors, Cancer, Cells, Culture, Disease models, Epithelial electrical-resistance, Hydrogel, Microfabrication, Microphysiological systems, Models, Niches, Organ-on-a-chips, Platform


Lopez-Muñoz, GA, Mughal, S, Ramón-Azcón, J, (2022). Sensors and Biosensors in Organs-on-a-Chip Platforms Advances In Experimental Medicine And Biology 1379, 55-80

Biosensors represent a powerful analytical tool for analyzing biomolecular interactions with the potential to achieve real-time quantitative analysis with high accuracy using low sample volumes, minimum sample pretreatment with high potential for the development of in situ and highly integrated monitoring platforms. Considering these advantages, their use in cell-culture systems has increased over the last few years. Between the different technologies for cell culture, organs-on-a-chip (OOCs) represent a novel technology that tries to mimic an organ's functionality by combining tissue engineering/organoid with microfluidics. Although there are still challenges to achieving OOC models with high organ mimicking relevance, these devices can offer effective models for drug treatment development by identifying drug targets, screening toxicity, and determining the potential effects of drugs in living beings. Consequently, in the future, we might replace animal studies by offering more ethical test models. Considering the relevance that different physiological and biochemical parameters have in the correct functionality of cells, sensing and biosensing platforms can offer an effective way for the real-time monitoring of physiological parameters and, in our opinion, more relevant, the secretion of biomarkers such as cytokines, growth factors, and others related with the influence of drugs or other types of stimulus in cell metabolism. Keeping this concept in mind, in this chapter, we focus on describing the potential use of sensors and biosensors in OOC devices to achieve fully integrated platforms that monitor physiological parameters and cell metabolism.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: alignment, biosensors, cell, crystal microbalance biosensor, electrochemical biosensors, future, graphene oxide, label-free detection, organ-on-a-chip, oxygen, pre-clinical platforms, real-time analysis, screening, Biosensors, Organ-on-a-chip, Pre-clinical platforms, Screening, Sensors, Surface-plasmon resonance


Yang, BQ, Wang, YX, Vorobii, M, Sauter, E, Koenig, M, Kumar, R, Rodriguez-Emmenegger, C, Hirtz, M, (2022). Evaluation of Dibenzocyclooctyne and Bicyclononyne Click Reaction on Azido-Functionalized Antifouling Polymer Brushes via Microspotting Advanced Materials Interfaces 9, 2102325

Mir, Monica, Palma-Florez, Sujey, Lagunas, Anna, Jose Lopez-Martinez, Maria, Samitier, Josep, (2022). Biosensors Integration in Blood-Brain Barrier-on-a-Chip: Emerging Platform for Monitoring Neurodegenerative Diseases Acs Sensors 7, 1237-1247

Over the most recent decades, the development of new biological platforms to study disease progression and drug efficacy has been of great interest due to the high increase in the rate of neurodegenerative diseases (NDDs). Therefore, blood-brain barrier (BBB) as an organ-on-a-chip (OoC) platform to mimic brain-barrier performance could offer a deeper understanding of NDDs as well as a very valuable tool for drug permeability testing for new treatments. A very attractive improvement of BBB-oC technology is the integration of detection systems to provide continuous monitoring of biomarkers in real time and a fully automated analysis of drug permeably, rendering more efficient platforms for commercialization. In this Perspective, an overview of the main BBB-oC configurations is introduced and a critical vision of the BBB-oC platforms integrating electronic read out systems is detailed, indicating the strengths and weaknesses of current devices, proposing the great potential for biosensors integration in BBB-oC. In this direction, we name potential biomarkers to monitor the evolution of NDDs related to the BBB and/or drug cytotoxicity using biosensor technology in BBB-oC.

JTD Keywords: biosensors, blood−brain barrier (bbb), neurodegenerative diseases (ndds), organ-on-a-chip (ooc), Bbb, Biosensors, Blood-brain barrier (bbb), Electrical-resistance, Electrochemical biosensors, Endothelial-cells, In-vitro model, Matrix metalloproteinases, Mechanisms, Neurodegenerative diseases (ndds), Organ-on-a-chip (ooc), Permeability, Stress, Transendothelial electrical resistance (teer), Transepithelial, Transepithelial/transendothelial electrical resistance (teer), Transport


Dulay, Samuel, Rivas, Lourdes, Pla, Laura, Berdun, Sergio, Eixarch, Elisenda, Gratacos, Eduard, Illa, Miriam, Mir, Monica, Samitier, Josep, (2021). Fetal ischemia monitoring with in vivo implanted electrochemical multiparametric microsensors Journal Of Biological Engineering 15, 28

Under intrauterine growth restriction (IUGR), abnormal attainment of the nutrients and oxygen by the fetus restricts the normal evolution of the prenatal causing in many cases high morbidity being one of the top-ten causes of neonatal death. The current gold standards in hospitals to detect this relevant problem is the clinical observation by echography, cardiotocography and Doppler. These qualitative techniques are not conclusive and requires risky invasive fetal scalp blood testing and/or amniocentesis. We developed micro-implantable multiparametric electrochemical sensors for measuring ischemia in real time in fetal tissue and vascular. This implantable technology is designed to continuous monitoring for an early detection of ischemia to avoid potential fetal injury. Two miniaturized electrochemical sensors were developed based on oxygen and pH detection. The sensors were optimized in vitro under controlled concentration, to assess the selectivity and sensitivity required. The sensors were then validated in vivo in the ewe fetus model, by means of their insertion in the muscle leg and inside the iliac artery of the fetus. Ischemia was achieved by gradually obstructing the umbilical cord to regulate the amount of blood reaching the fetus. An important challenge in fetal monitoring is the detection of low levels of oxygen and pH changes under ischemic conditions, requiring high sensitivity sensors. Significant differences were observed in both; pH and pO(2) sensors under changes from normoxia to hypoxia states in the fetus tissue and vascular with both sensors. Herein, we demonstrate the feasibility of the developed sensors for future fetal monitoring in medical applications.

JTD Keywords: electrochemical biosensor, implantable sensor, in vivo validation, ischemia detection, tissue and vascular monitoring, Animal experiment, Animal model, Animal tissue, Article, Blood-gases, Brain, Classification, Controlled study, Diagnosis, Doppler, Early diagnosis, Electrochemical analysis, Electrochemical biosensor, Ewe, Feasibility study, Female, Fetus, Fetus disease, Fetus monitoring, Gestational age, Hypoxemia, Iliac artery, Implantable sensor, In vivo validation, Intrauterine growth restriction, Intrauterine growth retardation, Ischemia detection, Leg muscle, Management, Nonhuman, Oxygen consumption, Ph, Ph and oxygen detection, Ph measurement, Process optimization, Sheep, Tissue and vascular monitoring, Umbilical-cord occlusion


Babeli, I, Puiggalí-Jou, A, Roa, JJ, Ginebra, MP, García-Torres, J, Alemán, C, (2021). Hybrid conducting alginate-based hydrogel for hydrogen peroxide detection from enzymatic oxidation of lactate International Journal Of Biological Macromolecules 193, 1237-1248

A conducting nanocomposite hydrogel is developed for the detection of L-lactate. The hydrogel is based on a mixture of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which is loaded with gold nanoparticles (GNP). In this novel hydrogel, Alg provides 3D structural support and flexibility, PEDOT confers conductivity and sensing capacity, and GNP provides signal amplification with respect to simple voltammetric and chronoamperometric response. The synergistic combination of the properties provided by each component results in a new flexible nanocomposite with outstanding capacity to detect hydrogen peroxide, which has been used to detect the oxidation of L-lactate. The hydrogel detects hydrogen peroxide with linear response and limits of detection of 0.91 ?M and 0.02 ?M by cyclic voltammetry and chronoamperometry, respectively. The hydrogel is functionalized with lactate oxidase, which catalyzes the oxidation of L-lactate to pyruvate, forming hydrogen peroxide. For L-lactate detection, the functionalized biosensor works in two linear regimes, one for concentrations lower than 5 mM with a limit of detection of 0.4 mM, and the other for concentrations up to 100 mM with a limit of detection of 3.5 mM. Because of its linear range interval, the developed biosensor could be suitable for a wide number of biological fluids. © 2021

JTD Keywords: biosensor, dehydrogenase, enzymatic oxidation, films, hardness, indentation, lactate oxidase, Biosensor, Elastic-modulus, Enzymatic oxidation, Lactate, Lactate oxidase, Reacciones enzimáticas


Vila, JC, Castro-Aguirre, N, Lopez-Munoz, GA, Ferret-Minana, A, De Chiara, F, Ramon-Azcon, J, (2021). Disposable Polymeric Nanostructured Plasmonic Biosensors for Cell Culture Adhesion Monitoring Frontiers In Bioengineering And Biotechnology 9, 799325

Over the last years, optical biosensors based on plasmonic nanomaterials have gained great scientific interest due to their unquestionable advantages compared to other biosensing technologies. They can achieve sensitive, direct, and label-free analysis with exceptional potential for multiplexing and miniaturization. Recently, it has been demonstrated the potential of using optical discs as high throughput nanotemplates for the development of plasmonic biosensors in a cost-effective way. This work is a pilot study focused on the development of an integrated plasmonic biosensor for the monitoring of cell adhesion and growth of human retinal pigmented cell line (ARPE-19) under different media conditions (0 and 2% of FBS). We observed an increase of the plasmonic band displacement under 2% FBS compared to 0% conditions over time (1, 3, and 5 h). These preliminary results show that the proposed plasmonic biosensing approach is a direct, non-destructive, and real-time tool that could be employed in the study of living cells behavior and culture conditions. Furthermore, this setup could assess the viability of the cells and their growth over time with low variability between the technical replicates improving the experimental replicability.

JTD Keywords: cell confluency, cell culture, nanocrystals, optical biosensor, Adhesion monitoring, Biosensing, Biosensors, Cell adhesion, Cell confluency, Cell culture, Cells, Condition, Cost effectiveness, Disposables, Nano-structured, Nanocrystals, Optical bio-sensors, Optical biosensor, Plasmonic biosensors, Plasmonic nanostructures, Plasmonics, Polylysine


Lopez-Muñoz, GA, Fernández-Costa, JM, Ortega, MA, Balaguer-Trias, J, Martin-Lasierra, E, Ramón-Azcón, J, (2021). Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles Nanophotonics 10, 4477-4488

Abstract The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).

JTD Keywords: assay, crystals, drug, label-free biosensing, molecules, plasmonic nanostructures, sensors, skeletal muscle, tissue engineering, Biodetection, Biomarkers, Biosensors, Cell culture, Cells, Chemical detection, Histology, Interleukin-6, Interleukin6 (il6), Label free, Label-free biosensing, Muscle, Nano-structured, Nanocrystals, Plasmonic nanocrystals, Plasmonic nanostructures, Plasmonics, Polycarbonate substrates, Polycarbonates, Refractive index, Sensitivity, Skeletal muscle, Tissue engineering, Tissues engineerings


Hidouri, S, Errachid, AH, Baussels, J, Korpan, YI, Ruiz-Sanchez, O, Baccar, ZM, (2021). Potentiometric sensing of histamine using immobilized enzymes on layered double hydroxides Journal Of Food Science And Technology-Mysore 58, 2936-2942

Diamine oxydase and peroxidase have been co-immobilized onto layered double hydroxide (LDH) thin films for the development of real-time histamine biosensors. The chosen LDH materials are Mg2AlCO3, Mg4FeCl and Ca2AlCl. Prepared bi-enzymatic hybrid nanomaterials are capable of detecting histamine through the electrochemical oxidation of H(2)O(2)and are used as the sensitive membrane for potentiometric microelectrode. Histamine biosensors developed in this work have fast response of less than 20 s, are sensitive and selective, with a large dynamic range of 10(-8)-10(-3) M and a limit of detection of less than 10(-8) M. The detection limit of the developed bi-enzymatic biosensors is relatively higher than those corresponding with gas and liquid chromatography, which are still considered as the reference methods. Finally, the reproducibility, the specificity and the storage stability of the biosensors were studied.

JTD Keywords: Biogenic-amines, Biosensor, Diamine oxidase, Film, Fish, Histamine, Hybrid nanomaterial, Immobilization, Layer double hydroxide, Potentiometric biosensor, Specificity


Fontana-Escartin, A, Puiggalí-Jou, A, Lanzalaco, S, Bertran, O, Aleman, C, (2021). Manufactured Flexible Electrodes for Dopamine Detection: Integration of Conducting Polymer in 3D-Printed Polylactic Acid Advanced Engineering Materials 23, 2100002

Flexible electrochemical sensors based on electroactive materials have emerged as powerful analytical tools for biomedical applications requiring bioanalytes detection. Within this context, 3D printing is a remarkable technology for developing electrochemical devices, due to no design constraints, waste minimization, and batch manufacturing with high reproducibility. However, the fabrication of 3D printed electrodes is still limited by the in-house fabrication of conductive filaments, which requires the mixture of the electroactive material with melted of thermoplastic polymer (e.g., polylactic acid, PLA). Herein, a simple approach is presented for preparing electrochemical dopamine (DA) biosensors. Specifically, the surface of 3D-printed PLA specimens, which exhibit an elastic modulus and a tensile strength of 3.7 +/- 0.3 GPa and 47 +/- 1 MPa, respectively, is activated applying a 0.5 m NaOH solution for 30 min and, subsequently, poly(3,4-ethylenedioxythiophene) is polymerized in situ using aqueous solvent. The detection of DA with the produced sensors has been demonstrated by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In summary, the obtained results reflect that low-cost electrochemical sensors, which are widely used in medicine and biotechnology, can be rapidly fabricated using the proposed approach that, although based on additive manufacturing, does not require the preparation of conductive filaments.

JTD Keywords: 3d printers, Additive manufacturing, Amines, Batch manufacturing, Biomedical applications, Chronoamperometry, Conducting polymer, Conducting polymers, Conductive filaments, Conservation, Cyclic voltammetry, Differential pulse voltammetry, Electroactive material, Electrochemical biosensor, Electrochemical devices, Electrochemical sensors, Electrodes, Electron emission, Flexible electrode, High reproducibility, Medical applications, Neurophysiology, Poly-3 ,4-ethylenedioxythiophene, Polyesters, Polylactic aci, Sodium hydroxide, Tensile strength, Thermoplastic polymer


Dulay, Samuel, Rivas, Lourdes, Miserere, Sandrine, Pla, Laura, Berdun, Sergio, Parra, Johanna, Eixarch, Elisenda, Gratacos, Eduard, Illa, Miriam, Mir, Monica, Samitier, Josep, (2021). in vivo Monitoring with micro-implantable hypoxia sensor based on tissue acidosis Talanta 226, 122045

© 2020 Elsevier B.V. Hypoxia is a common medical problem, sometimes difficult to detect and caused by different situations. Control of hypoxia is of great medical importance and early detection is essential to prevent life threatening complications. However, the few current methods are invasive, expensive, and risky. Thus, the development of reliable and accurate sensors for the continuous monitoring of hypoxia is of vital importance for clinical monitoring. Herein, we report an implantable sensor to address these needs. The developed device is a low-cost, miniaturised implantable electrochemical sensor for monitoring hypoxia in tissue by means of pH detection. This technology is based on protonation/deprotonation of polypyrrole conductive polymer. The sensor was optimized in vitro and tested in vivo intramuscularly and ex vivo in blood in adult rabbits with respiration-induced hypoxia and correlated with the standard device ePOCTM. The sensor demonstrated excellent sensitivity and reproducibility; 46.4 ± 0.4 mV/pH in the pH range of 4–9 and the selectivity coefficient exhibited low interference activity in vitro. The device was linear (R2 = 0.925) with a low dispersion of the values (n = 11) with a cut-off of 7.1 for hypoxia in vivo and ex vivo. Statistics with one-way ANOVA (α = 0.05), shows statistical differences between hypoxia and normoxia states and the good performance of the pH sensor, which demonstrated good agreement with the standard device. The sensor was stable and functional after 18 months. The excellent results demonstrated the feasibility of the sensors in real-time monitoring of intramuscular tissue and blood for medical applications.

JTD Keywords: biocompatibility, blood-flow, clinical monitoring, electrochemical biosensor, electrodes, hypoxia, implantable sensor, in vivo tissue monitoring, ischemia, lactate, ph, ph sensor, rabbits, responses, vitro, Clinical monitoring, Dual signal outputs, Hypoxia, Implantable sensor, In vivo tissue monitoring, Ischemia, Ph sensor


Ortega, MA, Rodríguez-Comas, J, Velasco-Mallorquí, F, Balaguer-Trias, J, Parra, V, Ramón-Azcón, J, Yavas, O, Quidant, R, Novials, A, Servitja, JM, (2021). In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip Biosensors 11, 138

Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.

JTD Keywords: biosensor, cytoarchitecture, dna hybridization, gelatin, in situ insulin monitoring, langerhans, lspr sensors, microfluidic device, organ-on-a-chip, parallel, platform, scaffold, Animals, Biosensing techniques, Diabetes mellitus, type 2, Drug discovery, Drug evaluation, preclinical, Human pancreatic-islets, Humans, In situ insulin monitoring, Insulin secretion, Insulins, Lab-on-a-chip devices, Lspr sensors, Oligonucleotide array sequence analysis, Organ-on-a-chip, Surface plasmon resonance


López-Ortiz, M, Zamora, RA, Antinori, ME, Gorostiza, P, Remesh, V, van Hulst, NF, Hu, C, Croce, R, (2021). Fast Photo-Chrono-Amperometry of Photosynthetic Complexes for Biosensors and Electron Transport Studies Acs Sensors 6, 581-587

© 2021 American Chemical Society. Photosynthetic reactions in plants, algae, and cyanobacteria are driven by photosystem I and photosystem II complexes, which specifically reduce or oxidize partner redox biomolecules. Photosynthetic complexes can also bind synthetic organic molecules, which inhibit their photoactivity and can be used both to study the electron transport chain and as herbicides and algicides. Thus, their development, characterization, and sensing bears fundamental and applied interest. Substantial efforts have been devoted to developing photosensors based on photosystem II to detect compounds that bind to the plastoquinone sites of this complex. In comparison, photosystem I based sensors have received less attention and could be used to identify novel substances displaying phytotoxic effects, including those obtained from natural product extracts. We have developed a robust procedure to functionalize gold electrodes with photo- and redox-active photosystem I complexes based on transparent gold and a thiolate self-assembled monolayer, and we have obtained reproducible electrochemical photoresponses. Chronoamperometric recordings have allowed us to measure photocurrents in the presence of the viologen derivative paraquat at concentrations below 100 nM under lock-in operation and a sensor dynamic range spanning six orders of magnitude up to 100 mM. We have modeled their time course to identify the main electrochemical processes and limiting steps in the electron transport chain. Our results allow us to isolate the contributions from photosystem I and the redox mediator, and evaluate photocurrent features (spectral and power dependence, fast transient kinetics) that could be used as a sensing signal to detect other inhibitors and modulators of photosystem I activity.

JTD Keywords: biosensor, herbicide, kinetic model, paraquat, photo-chrono-amperometry, photosystem i, self-assembled monolayer, transparent gold microelectrode, Biosensor, Herbicide, Kinetic model, Paraquat, Photo-chrono-amperometry, Photosystem i, Self-assembled monolayer, Transparent gold microelectrode


Marrugo-Ramírez, J, Mir, M, Samitier, J, Rodríguez-Núñez, M, Marco, MP, (2021). Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer's Disease Biosensors 11, 20

Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by a functional deterioration of the brain. Currently, there are selected biomarkers for its diagnosis in cerebrospinal fluid. However, its extraction has several disadvantages for the patient. Therefore, there is an urgent need for a detection method using sensitive and selective blood-based biomarkers. Kynurenic acid (KYNA) is a potential biomarker candidate for this purpose. The alteration of the KYNA levels in blood has been related with inflammatory processes in the brain, produced as a protective function when neurons are damaged. This paper describes a novel electrochemical immunosensor for KYNA detection, based on successive functionalization multi-electrode array. The resultant sensor was characterized by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The proposed biosensor detects KYNA within a linear calibration range from 10 pM to 100 nM using CA and EIS, obtaining a limit of detection (LOD) of 16.9 pM and 37.6 pM in buffer, respectively, being the lowest reported LOD for this biomarker. Moreover, to assess our device closer to the real application, the developed immunosensor was also tested under human serum matrix, obtaining an LOD of 391.71 pM for CA and 278.8 pM for EIS with diluted serum.

JTD Keywords: alzheimer’s disease (ad), blood analysis, chronoamperometry (ca), electrochemical biosensor, electrochemical impedance spectroscopy (eis), immunosensor, in vitro diagnosis (ivd), kynurenic acid (kyna), Alzheimer’s disease (ad), Blood analysis, Chronoamperometry (ca), Electrochemical biosensor, Electrochemical impedance spectroscopy (eis), Immunosensor, In vitro diagnosis (ivd), Kynurenic acid (kyna), Point of care diagnosis (poc)


Marti, D, Martin-Martinez, E, Torras, J, Bertran, O, Turon, P, Aleman, C, (2021). In silico antibody engineering for SARS-CoV-2 detection Computational And Structural Biotechnology Journal 19, 5525-5534

Engineered immunoglobulin-G molecules (IgGs) are of wide interest for the development of detection elements in protein-based biosensors with clinical applications. The strategy usually employed for the de novo design of such engineered IgGs consists on merging fragments of the three-dimensional structure of a native IgG, which is immobilized on the biosensor surface, and of an antibody with an exquisite target specificity and affinity. In this work conventional and accelerated classical molecular dynamics (cMD and aMD, respectively) simulations have been used to propose two IgG-like antibodies for COVID-19 detection. More specifically, the crystal structure of the IgG1 B12 antibody, which inactivates the human immunodeficiency virus-1, has been merged with the structure of the antibody CR3022 Fab tightly bounded to SARS-CoV-2 receptor-binding domain (RBD) and the structure of the 5309 antibody Fab fragment complexed with SARS-CoV-2 RBD. The two constructed antibodies, named IgG1-CR3022 and IgG1-S309, respectively, have been immobilized on a stable gold surface through a linker. Analyses of the influence of both the merging strategy and the substrate on the stability of the two constructs indicate that the IgG1-S309 antibody better preserves the neutralizing structure than the IgG1-CR3022 one. Overall, results indicate that the IgG1-S309 is appropriated for the generation of antibody based sensors for COVID-19 diagnosis. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

JTD Keywords: cr3022, igg1, molecular engineering, s309, Antibodies, Antibody engineering, Biosensors, Chemical detection, Clinical application, Cov, Cr3022, Crystal structure, Design, Diseases, Gold nanoparticles, Igg1, Igg1 antibody, Immobilization, Immunoglobulin g, Immunosensor, In-silico, Merging, Molecular dynamics, Molecular engineering, Orientation, Protein-based biosensors, Receptor-binding domains, S309, Sars, Sensor, Spike protein, Target, Vaccine, Viruses


Lanzalaco, S., Fabregat, G., Muñoz-Galan, H., Cabrera, J., Muñoz-Pascual, X., Llorca, J., Alemán, C., (2020). Recycled low-density polyethylene for noninvasive glucose monitoring: A proposal for plastic recycling that adds technological value ACS Sustainable Chemistry and Engineering 8, (33), 12554-12560

In this work, we present a successful strategy to convert recycled LDPE films, which usually end up in landfills or leak into the environment, into an advanced biomedical product. More specifically, LDPE films for food packaging have been treated with atmosphere corona discharge plasma for electrochemical detection of glucose. Enzyme-functionalized sensors manufactured using such recycled materials, which act as a mediator capable of electrocommunicating with the glucose oxidase (GOx) enzyme, are able to detect glucose concentrations in sweat and are fully compatible with the levels of such bioanalytes in both healthy and diabetic patients. Covalent immobilization of the GOx enzyme on the plasma-treated LDPE films has been successfully performed using the carbodiimide method, as proved by X-ray photoelectron spectroscopy. Then, the electronic communication between the deeply buried active site of the GOx and the reactive excited species formed at the surface of the plasma-treated LDPE has been demonstrated by linear sweep voltammetry. Finally, cyclic voltammetry in artificial sweat has been used to show that the LDPE-functionalized sensor has a linear response in the concentration of range of 50 μM to 1 mM with a limit of detection of 375 μA·μM–1·cm–2. Comparison of the performance of sensors prepared using recycled (i.e. with additives) and pristine (i.e. without additives) LDPE indicates that the utilization of the former does not require any pretreatment to eliminate additives. The present strategy demonstrates a facile approach for recycling LDPE waste into a high value-added product, which will potentially pave the way for the treatment of plastic waste in the future. Noninvasive glucose sensors based on recycled LDPE may play a crucial role in monitoring diabetes in underdeveloped regions.

JTD Keywords: Biosensors, Diabetes monitoring, High-value recycling, Plasma treatment, Sweat sensors


Moghimiardekani, A., Molina, B. G., Enshaei, H., del Valle, L. J., Pérez-Madrigal, M. M., Estrany, F., Alemán, C., (2020). Semi-interpenetrated hydrogels-microfibers electroactive assemblies for release and real-time monitoring of drugs Macromolecular Bioscience 20, (7), 2000074

Simultaneous drug release and monitoring using a single polymeric platform represents a significant advance in the utilization of biomaterials for therapeutic use. Tracking drug release by real-time electrochemical detection using the same platform is a simple way to guide the dosage of the drug, improve the desired therapeutic effect, and reduce the adverse side effects. The platform developed in this work takes advantage of the flexibility and loading capacity of hydrogels, the mechanical strength of microfibers, and the capacity of conducting polymers to detect the redox properties of drugs. The engineered platform is prepared by assembling two spin-coated layers of poly-γ-glutamic acid hydrogel, loaded with poly(3,4-ethylenedioxythiophene) (PEDOT) microparticles, and separated by a electrospun layer of poly-ε-caprolactone microfibers. Loaded PEDOT microparticles are used as reaction nuclei for the polymerization of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT), that semi-interpenetrate the whole three layered system while forming a dense network of electrical conduction paths. After demonstrating its properties, the platform is loaded with levofloxacin and its release monitored externally by UV–vis spectroscopy and in situ by using the PHMeDOT network. In situ real-time electrochemical monitoring of the drug release from the engineered platform holds great promise for the development of multi-functional devices for advanced biomedical applications.

JTD Keywords: Biosensors, Conducting polymers, Drug delivery, Poly-γ-glutamic acid, Poly-ε-caprolactone


Hernández-Albors, Alejandro, Castaño, Albert G., Fernández-Garibay, Xiomara, Ortega, María Alejandra, Balaguer, Jordina, Ramón-Azcón, Javier, (2019). Microphysiological sensing platform for an in-situ detection of tissue-secreted cytokines Biosensors and Bioelectronics: X 2, 100025

Understanding the protein-secretion dynamics from single, specific tissues is critical toward the advancement of disease detection and treatments. However, such secretion dynamics remain difficult to measure in vivo due to the uncontrolled contributions from other tissue populations. Here, we describe an integrated platform designed for the reliable, near real-time measurements of cytokines secreted from an in vitro single-tissue model. In our setup, we grow 3D biomimetic tissues to discretize cytokine source, and we separate them from a magnetic microbead-based biosensing system using a Transwell insert. This design integrates physiochemically controlled biological activity, high-sensitivity protein detection (LOD < 20 pg mL−1), and rapid protein diffusion to enable non-invasive, near real-time measurements. To showcase the specificity and sensitivity of the system, we use our setup to probe the inflammatory process related to the protein Interleukine 6 (IL-6) and to the Tumor Necrosis Factor (TNF-α). We show that our setup can monitor the time-dependence profile of IL-6 and TNF-α secretion that results from the electrical and chemical stimulation of 3D skeletal muscle tissues. We demonstrate a novel and affordable methodology for discretizing the secretion kinetics of specific tissues for advancing metabolic-disorder studies and drug-screening applications.

JTD Keywords: Microphysiological tissues, Tissue engineering, Electrochemical, biosensors, Magnetic particles, Skeletal muscle, Electric stimulation


Samitier, Josep, Correia, A., (2019). Biomimetic Nanotechnology for Biomedical Applications (NanoBio&Med 2018) Biomimetics MDPI

Emerging nanobiotechnologies can offer solutions to the current and future challenges in medicine. By covering topics from regenerative medicine, tissue engineering, drug delivery, bionanofabrication, and molecular biorecognition, this Special Issue aims to provide an update on the trends in nanomedicine and drug delivery using biomimetic approaches, and the development of novel biologically inspired devices for the safe and effective diagnosis, prevention, and treatment of disease.

JTD Keywords: Bioinspired nanotechnologies, Bionanofabrication, Bio-nano measurement and microscopy, Nanomaterials for biological and medical applications, Nanoassemblies, Nanostructured surfaces, Drug delivery, Nanobioelectronics, Integrated systems/nanobiosensors, Nanotoxicology, Graphene-based applications


Pérez, Judit, Dulay, Samuel, Mir, M., Samitier, Josep, (2018). Molecular architecture for DNA wiring Biosensors and Bioelectronics 121, 54-61

Detection of the hybridisation events is of great importance in many different biotechnology applications such as diagnosis, computing, molecular bioelectronics, and among others. However, one important drawback is the low current of some redox reporters that limits their application. This paper demonstrates the powerful features of molecular wires, in particular the case of S-[4-[2-[4-(2-Phenylethynyl)phenyl]ethynyl]phenyl] thiol molecule and the key role that play the nanometric design of the capture probe linkers to achieve an efficient couple of the DNA complementary ferrocene label with the molecular wire for an effective electron transfer in co-immobilised self-assembled monolayers (SAMs) for DNA hybridisation detection. In this article, the length of the linker capture probe was studied for electron transfer enhancement from the ferrocene-motifs of immobilised molecules towards the electrode surface to obtain higher kinetics in the presence of thiolated molecular wires. The use of the right couple of capture probe linker and molecular wire has found to be beneficial as it helps to amplify eightfold the signal obtained.

JTD Keywords: DNA hybridisation, Bioelectronics, Electron transfer rate constant, Molecular wires, Electrochemistry, Ferrocene, Biosensor


Zaffino, R. L., Mir, M., Samitier, J., (2017). Oligonucleotide probes functionalization of nanogap electrodes Electrophoresis , 38, (21), 2712-2720

Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications.

JTD Keywords: Biosensor bioelectronics, DNA electrophoresis, Nanogap electrodes, Self-assembled monolayers, Site-selective deposition


Galán, T., Prieto-Simón, B., Alvira, M., Eritja, R., Götz, G., Bäuerle, P., Samitier, J., (2015). Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes Biosensors and Bioelectronics 74, 751-756

Here we describe a label-free electrochemical DNA sensor based on poly(3,4-ethylenedioxythiophene)-modified (PEDOT-modified) electrodes. An acetylene-terminated DNA probe, complementary to a specific "Hepatitis C" virus sequence, was immobilized onto azido-derivatized conducting PEDOT electrodes using "click" chemistry. DNA hybridization was then detected by differential pulse voltammetry, evaluating the changes in the electrochemical properties of the polymer produced by the recognition event. A limit of detection of 0.13. nM was achieved using this highly selective PEDOT-based genosensor, without the need for labeling techniques or microelectrode fabrication processes. These results are promising for the development of label-free and reagentless DNA hybridization sensors based on conducting polymeric substrates. Biosensors can be easily prepared using any DNA sequence containing an alkyne moiety. The data presented here reveal the potential of this DNA sensor for diagnostic applications in the screening of diseases, such as "Hepatitis C", and genetic mutations.

JTD Keywords: Azido-EDOT, Click chemistry, Differential pulse voltammetry, DNA biosensor, Electrochemistry, Hepatitis C virus


Pardo, W. A., Mir, M., Samitier, J., (2015). Signal enhancement in ultraflat electrochemical DNA biosensors Electrophoresis , 36, (16), 1905-1911

The ability of holding back the undesired molecules, but at the same time to provide the right distribution and orientation of the bioreceptors, are critical targets to reach an efficient hybridization and enhanced detection in electrochemical DNA biosensors. The main actors responsible of these key functions are the substrate of the sensor and the interface auto-assembled on it. In this paper we present the annealing as a method to improve commercial gold evaporated substrates for biosensor applications. The restructuring of granulated gold surface by means of annealing heating treatment leads to the formation of ultraflat gold lamellar terraces. The formation of terraces was characterized with scanning tunneling microscopy and optical interferometry. The performance of the sensor sensitivity on granular substrates and ultraflat substrates was studied, concerning the orientation and surface coverage of the bioreceptor interface applied in electrochemical biosensor. The hybridization efficiency of ferrocene-labeled DNA amplified by PCR was characterized with surface plasmon resonance and electrochemistry. The experimental results demonstrate that annealing process, positive influence on optical and voltammetric readings, due to a structured organization of the bioreceptors on the flat substrate, gaining more efficient immobilization and DNA hybridization. The results suggest the annealing as a powerful tool for improving gold substrates in biosensors applications.

JTD Keywords: Annealing ultraflat surfaces, DNA biosensor, DNA hybridization, Electrochemistry, Self-assembled monolayer


Urbán, P., Fernàndez-Busquets, X., (2014). Nanomedicine against malaria Current Medicinal Chemistry , 21, (5), 605-629

Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium sp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Different types of encapsulating structure, targeting molecule, and antimalarial compound will be discussed for the assembly of Trojan horse nanocapsules capable of targeting with complete specificity diseased cells and of delivering inside them their antimalarial cargo with the objective of eliminating the parasite with a single dose. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite. Finally, methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite's strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies. The benefits and drawbacks of these nanosystems will be considered in different possible scenarios, including cost-related issues that might be hampering the development of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas.

JTD Keywords: Dendrimers, Liposomes, Malaria diagnosis, Nanobiosensors, Nanoparticles, Plasmodium, Polymers, Targeted drug delivery


Zaffino, R. L., Mir, M., Samitier, J., (2014). Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor Nanotechnology 25, (10), 105501 (8)

We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications.

JTD Keywords: Biosensor, DNA hybridization, Labelfree, Nanogap, Single nucleotide mutation


Juanola-Feliu, E., Miribel-Català, P. L., Avilés, C. P., Colomer-Farrarons, J., González-Piñero, M., Samitier, J., (2014). Design of a customized multipurpose nano-enabled implantable system for in-vivo theranostics Sensors 14, (10), 19275-19306

The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device.

JTD Keywords: Biocompatible, Biosensor, Biotelemetry, Implantable multi-sensor, Innovation, KET, Nanomedicine, Personalized medicine, Biotelemetry, Innovation, Medical nanotechnology, Biocompatible, Implantable system, In-vivo, KET, Multi sensor, Personalized medicines, Theranostics, Biosensors


Juanola-Feliu, Esteve, Colomer-Farrarons, Jordi, Miribel-Català, Pere, González-Piñero, Manel, Samitier, Josep, (2014). Nano-enabled implantable device for glucose monitoring Implantable Bioelectronics (ed. Katz, Evgeny), Wiley-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany) , 247-263

This chapter contains sections titled: * Introduction * Biomedical Devices for In Vivo Analysis * Conclusions and Final Recommendations * References

JTD Keywords: Technology transfer, Innovation management, Nanotechnology, Nanobiosensor, Diabetes, Biomedical device, Implantable biosensors


Gorostiza, Pau, Arosio, Daniele, Bregestovski, Piotr, (2013). Molecular probes and switches for functional analysis of receptors, ion channels and synaptic networks Frontiers in Molecular Neuroscience 6, (Article 48), 1-2

Diéguez, Lorena, Caballero, David, Calderer, Josep, Moreno, Mauricio, Martínez, Elena, Samitier, Josep, (2012). Optical gratings coated with thin Si3N4 layer for efficient immunosensing by optical waveguide lightmode spectroscopy Biosensors , 2, (2), 114-126

New silicon nitride coated optical gratings were tested by means of Optical Waveguide Lightmode Spectroscopy (OWLS). A thin layer of 10 nm of transparent silicon nitride was deposited on commercial optical gratings by means of sputtering. The quality of the layer was tested by x-ray photoelectron spectroscopy and atomic force microscopy. As a proof of concept, the sensors were successfully tested with OWLS by monitoring the concentration dependence on the detection of an antibody-protein pair. The potential of the Si3N4 as functional layer in a real-time biosensor opens new ways for the integration of optical waveguides with microelectronics.

JTD Keywords: Silicon nitride, Optical gratings, Waveguide, Biosensor


Tort, N., Salvador, J. P., Avino, A., Eritja, R., Comelles, J., Martinez, E., Samitier, J., Marco, M. P., (2012). Synthesis of steroid-oligonucleotide conjugates for a DNA site-encoded SPR immunosensor Bioconjugate Chemistry , 23, (11), 2183-2191

The excellent self-assembling properties of DNA and the excellent specificity of the antibodies to detect analytes of small molecular weight under competitive conditions have been combined in this study. Three oligonucleotide sequences (N(1)up, N(2)up, and N(3)up) have been covalently attached to three steroidal haptens (8, hG, and 13) of three anabolic-androgenic steroids (AAS), stanozolol (ST), tetrahydrogestrinone (THG), and boldenone (B), respectively. The synthesis of steroid oligonucleotide conjugates has been performed by the reaction of oligonucleotides carrying amino groups with carboxyl acid derivatives of steroidal haptens. Due to the chemical nature of the steroid derivatives, two methods for coupling the haptens and the ssDNA have been studied: a solid-phase coupling strategy and a solution-phase coupling strategy. Specific antibodies against ST, THG, and B have been used in this study to asses the possibility of using the self-assembling properties of the DNA to prepare biofunctional SPR gold chips based on the immobilization of haptens, by hybridization with the complementary oligonucleotide strands possessing SH groups previously immobilized. The capture of the steroid oligonucleotide conjugates and subsequent binding of the specific antibodies can be monitored on the sensogram due to variations produced on the refractive index on top of the gold chip. The resulting steroid oligonucleotide conjugates retain the hybridization and specific binding properties of oligonucleotides and haptens as demonstrated by thermal denaturation experiments and surface plasmon resonance (SPR).

JTD Keywords: Directed protein immobilization, Plasmon resonance biosensor, Self-assembled monolayers, Label-free, Serum samples, Assay, Immunoassays, Antibodies, Progress, Binding


Baccar, Z.M., Caballero, D., Eritja, R., Errachid, A., (2012). Development of an impedimetric DNA-biosensor based on layered double hydroxide for the detection of long ssDNA sequences Electrochimica Acta 74, 123-129

DNA testing requires the development of sensitive and fast devices to measure the presence of nucleic acid sequences by DNA hybridization. In this paper, a simple and label-free DNA-biosensor has been investigated based on the detection of DNA hybridization on layered double hydroxide (LDH) nanomaterials with special emphasis on targeting long single stranded DNA sequences. First, the immobilization of a 20 bases long DNA probe on a thin layer of Mg2AlCO3 and Mg3AlCO3 LDH was studied. Then, DNA hybridization reaction was detected by means of Electrochemical Impedance Spectroscopy. The resulting biosensor showed a high sensitivity for the detection of 80 bases long DNA complementary sequences. The dynamic range was 18–270 ng/ml with a detection limit lower than 1.8 ng/ml.

JTD Keywords: DNA-biosensor, Nanomaterials, Layered double hydroxide, Self-assembly


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment


Azevedo, S., Diéguez, L., Carvalho, P., Carneiro, J. O., Teixeira, V., Martínez, Elena, Samitier, J., (2012). Deposition of ITO thin films onto PMMA substrates for waveguide based biosensing devices Journal of Nano Research , 17, 75-83

Biosensors' research filed has clearly been changing towards the production of multifunctional and innovative design concepts to address the needs related with sensitivity and selectivity of the devices. More recently, waveguide biosensors, that do not require any label procedure to detect biomolecules adsorbed on its surface, have been pointed out as one of the most promising technologies for the production of biosensing devices with enhanced performance. Moreover the combination of optical and electrochemical measurements through the integration of transparent and conducting oxides in the multilayer structures can greatly enhance the biosensors' sensitivity. Furthermore, the integration of polymeric substrates may bring powerful advantages in comparison with silicon based ones. The biosensors will have a lower production costs being possible to disposable them after use ("one use sensor chip"). This research work represents a preliminary study about the influence of substrate temperature on the overall properties of ITO thin films deposited by DC magnetron sputtering onto 0,5 mm thick PMMA sheets.

JTD Keywords: ITO thin films, PMMA sheets, Waveguide biosensing devices, Biosensing devices, Conducting oxides, Dc magnetron sputtering, Electrochemical measurements, Enhanced performance, Innovative design, ITO thin films, Multilayer structures, Overall properties, PMMA sheets, Polymeric substrate, Production cost, Sensor chips, Silicon-based, Substrate temperature, Biosensors, Deposition, Design, Film preparation, Optical multilayers, Thin films, Vapor deposition, Waveguides, Substrates


Mir, Monica, Martinez-Rodriguez, Sergio, Castillo-Fernandez, Oscar, Homs-Corbera, Antoni, Samitier, Josep, (2011). Electrokinetic techniques applied to electrochemical DNA biosensors Electrophoresis , 32, (8), 811-821

Electrokinetic techniques are contact-free methods currently used in many applications, where precise handling of biological entities, such as cells, bacteria or nucleic acids, is needed. These techniques are based on the effect of electric fields on molecules suspended in a fluid, and the corresponding induced motion, which can be tuned according to some known physical laws and observed behaviours. Increasing interest on the application of such strategies in order to improve the detection of DNA strands has appeared during the recent decades. Classical electrode-based DNA electrochemical biosensors with combined electrokinetic techniques present the advantage of being able to improve the working electrode's bioactive part during their fabrication and also the hybridization yield during the sensor detection phase. This can be achieved by selectively manipulating, driving and directing the molecules towards the electrodes increasing the speed and yield of the floating DNA strands attached to them. On the other hand, this technique can be also used in order to make biosensors reusable, or reconfigurable, by simply inverting its working principle and pulling DNA strands away from the electrodes. Finally, the combination of these techniques with nanostructures, such as nanopores or nanochannels, has recently boosted the appearance of new types of electrochemical sensors that exploit the time-varying position of DNA strands in order to continuously scan these molecules and to detect their properties. This review gives an insight into the main forces involved in DNA electrokinetics and discusses the state of the art and uses of these techniques in recent years.

JTD Keywords: Electrochemical DNA biosensors, Lab-on-a-chip (LOC), Micro-total analysis systems (mu TAS), Nanopore


Punter-Villagrasa, J., Colomer-Farrarons, J., Miribel-Catala, P., Puig-Vidal, M., Samitier, J., (2011). Discrete to full custom ASIC solutions for bioelectronic applications Proceedings of the SPIE - The International Society for Optical Engineering VLSI Circuits and Systems V , SPIE - The International Society for Optical Engineering (Prague, Czech Republic) 8067, 80670Q

This paper presents a first approach on multi-pathogen detection system for portable point-of-care applications on discrete electronics field. The main interest is focused on the development of custom built electronic solutions for bioelectronics applications, from discrete devices to ASICS solutions.

JTD Keywords: Application specific integrated circuits, Biomedical electronics, Biosensors


Colomer-Farrarons, Jordi , Miribel-Català, Pedro Luís, Samitier, Josep , (2011). Low-voltage µpower CMOS subcutaneous biomedical implantable device for true/false applications Biomedical Engineering IASTED International Conference Biomedical Engineering (Biomed 2011) (ed. Baumgartner, C.), ACTA Press (Innsbruck, Austria) Biomedical Engineering, 424-428

A ±1.2V / 350μW integrated front-end architecture for a true/false in-vivo subcutaneous detection device is presented. The detection is focused on using three electrodes amperometric sensors. The powering and AM transcutaneous communication are based on an inductively coupled link working at 13.56 MHz. A prototype device (5.5 mm x 29.5 mm) has been implemented and fully validated.

JTD Keywords: Implantable Device, Front-End architecture, Bioelectronics, Microelectronics Design, Biosensors


Mir, M., (2011). Aptamers: The new biorecognition element for proteomic biosensing Biochemistry Research Updates (ed. Baginski, Simon J.), Nova Science Publishers, Inc (Hauppauge, USA) , -----

Aptamers are single stranded artificial nucleic acid ligands that can be generated against almost any kind of target, such as ions, metabolites aminoacids, drugs, toxins, proteins or whole cells. They are isolated from combinatorial libraries of synthetic nucleic acids by an iterative process of adsorption, recovery and amplification, know as SELEX (Systematic Evolution of Ligands by EXponential enrichment) process. Aptamers, the nucleic acid equivalent to antibodies, are easy to synthesise, is not required the use of animals for its synthesis, for this reason it can be developed again toxins and small molecules that do not produce immune response in animals and can be tuned for affinity in closer to assay conditions permitting recognition out of the physiological state. So, aptamers posses numerous advantages that make them preferred candidates as biorecognition elements. In view of the advantages and simple structure of aptamers, they have been used in a wide range of applications such as therapeutics, diagnosis, chromatography, environmental detection, among other.

JTD Keywords: Aptamers, Biosensors, Protein recognition


Colomer-Farrarons, Jordi, Miribel-Català, Pere LI., Rodríguez-Villarreal, A. Ivón, Samitier, Josep, (2011). Portable bio-devices: Design of electrochemical instruments from miniaturized to implantable devices New perspectives in biosensors technology and applications (ed. Andrea Serra, Pier), InTech (Rijeka, Croatia) Biomedical Engineering, 373-400

A biosensor is a detecting device that combines a transducer with a biologically sensitive and selective component. Biosensors can measure compounds present in the environment, chemical processes, food and human body at low cost if compared with traditional analytical techniques. This book covers a wide range of aspects and issues related to biosensor technology, bringing together researchers from 12 different countries. The book consists of 20 chapters written by 69 authors and divided in three sections: Biosensors Technology and Materials, Biosensors for Health and Biosensors for Environment and Biosecurity.

JTD Keywords: Bio-Devices, Electrochemical Instruments, Miniaturized Devices, Nanobiosensor


Prieto-Simón, B., Campà s, M., Marty, J. L., (2010). Electrochemical aptamer-based sensors Bioanalytical Reviews , 1, (2), 141-157

The valuable properties of aptamers, such as specificity, sensitivity, stability, cost-effectiveness and design flexibility, have favoured their use as biorecognition elements in biosensor development. These synthetic affinity probes can be developed for almost any target molecule, covering a wide range of applications in fields such as clinical diagnosis and therapy, environmental monitoring and food control. The combination of aptamers with high-performance electrochemical transducers, with their inherent high sensitivities, fast response times and simple equipment, has already provided several electrochemical aptamer-based sensors. Moreover, the small size and versatility of aptamers allow efficient immobilisations in high-density monolayers, an important feature towards miniaturisation and integration of compact electrochemical devices. This review describes the state-of-the-art of electrochemical aptamer-based sensors, entering into the details of the different strategies and types of electrochemical transduction and also considering their advantages when applied to the analysis of complex matrices.

JTD Keywords: Aptabeacon, Aptamer, Biosensor, Electrochemical detection, Redox label


Sanmarti, M., Iavicoli, P., Pajot-Augy, E., Gomila, G., Samitier, J., (2010). Human olfactory receptors immobilization on a mixed self assembled monolayer for the development of a bioelectronic nose Procedia Engineering (EUROSENSOR XXIV CONFERENCE) 24th Eurosensor Conference (ed. Jakoby, B., Vellekoop, M.J.), Elsevier Science (Linz, Austria) 5, 786-789

The present work focuses on the development of an immunosensing surface to build a portable olfactory system for the detection of complex mixture of odorants. Homogeneous cell derived vesicles expressing the olfactory receptors were produced and immobilized with efficiency onto a gold substrate through an optimized surface functionalization method.

JTD Keywords: Bioelectronic noses, Biosensors, Nanoproteoliposomes, Nanosomes, Olfactory receptors, SAMs


Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis , 30, (19), 3386-3397

Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

JTD Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor


Barreiros dos Santos, M., Sporer, C., Sanvicens, N., Pascual, N., Errachid, A., Martinez, E., Marco, M. P., Teixeira, V., Samiter, J., (2009). Detection of pathogenic Bacteria by Electrochemical Impedance Spectroscopy: Influence of the immobilization strategies on the sensor performance Procedia Chemistry 23rd Eurosensors Conference (ed. Brugger, J., Briand, D.), Elsevier Science, BV (Lausanne, Switzerland) 1, 1291-1294

Electrochemical impedance spectroscopy (EIS) is applied to detect pathogenic E. coli O157:H7 bacteria via a label free immunoassay-based detection method. Polyclonal anti-E.coli antibodies (PAb) are immobilized onto gold electrodes following two different strategies, via chemical bond formation between antibody amino groups and a carboxylic acid containing self-assembled molecular monolayer (SAM) and alternatively by linking a biotinylated anti-E. coli to Neutravidin on a mixed-SAM. Impedance spectra for sensors of both designs for increasing concentrations of E. coli are recorded in phosphate buffered saline (PBS). The Nyquist plots can be modeled with a Randle equivalent circuit, identifying the charge transfer resistance RCT as the relevant concentration dependent parameter. Sensors fabricated from both designs are able to detect very low concentration of E. coli with limits of detection as low as 10-100 cfu/ml. The influence of the different immobilization protocols on the sensor performance is evaluated in terms of sensitivity, dynamic range and resistance against nonspecific absorption.

JTD Keywords: Bacteria detection, Biosensors, E-coli, Impedance spectroscopy


Baccar, Z. M., Caballero, D., Zine, N., Jaffrezic-Renault, N., Errachid, A., (2009). Development of urease/layered double hydroxides nanohybrid materials for the urea detection: Synthesis, analytical and catalytic characterizations Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 676-682

We developed new hybrid nanomaterials, urease/LDH (layered double hydroxides), for the urea detection. The LDH that were prepared by co-precipitation in constant pH and in ambient temperature are hydrotalcites (Mg2Al, Mg3Al) and zaccagnaite (Zn2Al and Zn3Al). The immobilization of urease in these various layered hybrid materials is realized by auto-assembly. The structures of hosted matrices were studied by X-ray diffraction, Absorbance Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allowed the characterisation of the urease immobilization and its interactions with LDH chemical groups. The urease was adsorbed and its morphology was conserved in its new environment. Furthermore, the study of catalytic parameters of Urease/LDH biomembranes and of the kinetics reaction of urea hydrolysis shows a good conformation of the enzyme in hydrotalcite matrices and that the affinity is similar to free urease.

JTD Keywords: Ldh hybrid nanomaterials, Surface properties, Urea biosensors, Urease thin films


Baccar, Z. M., Hidouri, S., El Bari, N., Jaffrezic-Renault, N., Errachid, A., Zine, N., (2009). Stable immobilization of anti-beta casein antibody onto layered double hydroxides materials for biosensor applications Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 647-655

This review presents the development of new kind of antibody/LDH (layered double hydroxides) hybrid nanomaterials for beta casein detection. The preparation method of the LDH is described. It is based on the co-precipitation of metallic salts in constant pH and temperature. The chosen LDH are hydrotalcites (Mg2AICO3, Mg3AICO3), Zaccagnaite: Zn2AICO3 and hydrocalumite: Ca 2AICI. Finally, the antibody is immobilized into the LDH materials using Layer-by-Layer method by autoassembly. In this work, we studied the surface properties of the prepared hybrid biomembranes using X-ray diffraction, Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allow describing the antibody immobilization and its interactions with LDH. The antibody was adsorbed and its morphology was conserved in its new environment after more than 15 days continuously in PBS solution, promising a constant biosensor performance.

JTD Keywords: Anti β-casein antibody, Antibody immobilization, Ldh hybrid biomaterials, Urea biosensors


Cho, S., Castellarnau, M., Samitier, J., Thielecke, H., (2008). Dependence of impedance of embedded single cells on cellular behaviour Sensors 8, (2), 1198-1211

Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour.

JTD Keywords: Frequency-domain, Spectroscopy, Erythrocytes, Biosensor, Membrane, System


Rodriguez, Segui, Bucior, I., Burger, M. M., Samitier, J., Errachid, A., Fernàndez-Busquets, X., (2007). Application of a bio-QCM to study carbohydrates self-interaction in presence of calcium Transducers '07 & Eurosensors Xxi, Digest of Technical Papers 14th International Conference on Solid-State Sensors, Actuators and Microsystems , IEEE (Lyon, France) 1-2, 1995-1998

In the past years, the quartz crystal microbalance (QCM) has been successfully applied to follow interfacial physical chemistry phenomena in a label free and real time manner. However, carbohydrate self adhesion has only been addressed partially using this technique. Carbohydrates play an important role in cell adhesion, providing a highly versatile form of attachment, suitable for biologically relevant recognition events in the initial steps of adhesion. Here, we provide a QCM study of carbohydrates' self-recognition in the presence of calcium, based on a species-specific cell recognition model provided by marine sponges. Our results show a difference in adhesion kinetics when varying either the calcium concentration (with a constant carbohydrate concentration) or the carbohydrate concentration (with constant calcium concentration).

JTD Keywords: Biomedical materials, Calcium, Cellular biophysics, Microbalances, Porous materials, Quartz, Surface chemistry/ bio-QCM, Carbohydrates self-interaction, Quartz crystal microbalance, Interfacial physical chemistry phenomena, Carbohydrate self adhesion, Biologically relevant recognition events, Marine sponges, Adhesion kinetics, Calcium concentration, Carbohydrate concentration, Biosensors, Biomedical materials, Surface chemistry, Cellular biophysics