by Keyword: light sheet fluorescence microscopy
Hafa, L, Breideband, L, Posada, LR, Torras, N, Martinez, E, Stelzer, EHK, Pampaloni, F, (2024). Light Sheet-Based Laser Patterning Bioprinting Produces Long-Term Viable Full-Thickness Skin Constructs Advanced Materials 36, e2306258
Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. Three-dimensional (3D) bioprinting stands out for its design flexibility and reproducibility. Here, we present an integrated fluorescent light sheet bioprinting and imaging system that combines high printing speed (0.66 mm3 /s) and resolution (9 μm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.
JTD Keywords: cadherin, collagen, culture, differentiation, fluorescence microscopy, full-thickness skin model, hydrogels, light sheet bioprinter, light sheet fluorescence microscopy, proliferation, survival, tissue engineering, Animal, Animals, Biofabrication, Bioprinting, Cell culture, Crosslinking, Fluorescence, Fluorescence microscopy, Full-thickness skin model, Hair follicle, Human, Humans, Hydrogel, Hydrogels, Image resolution, Laser patterning, Light sheet, Light sheet bioprinter, Light sheet fluorescence microscopy, Molecular biology, Photobleaching, Printing, three-dimensional, Procedures, Reproducibility, Reproducibility of results, Skin model, Three dimensional printing, Tissue, Tissue engineering, Tissue regeneration, Tissue scaffolds, Tissues engineerings
Hafa, Levin, Breideband, Louise, Ramirez Posada, Lucas, Torras, Nuria, Martinez, Elena, Stelzer, Ernst H K, Stelzer, Ernst H K, Pampaloni, Francesco, (2024). Light Sheet-Based Laser Patterning Bioprinting Produces Long-Term Viable Full-Thickness Skin Constructs (Back Cover from Adv. Mater. 8/2024) Advanced Materials 36, 2470064
Altay, Gizem, Abad-Lazaro, Aina, Gualda, Emilio J, Folch, Jordi, Insa, Claudia, Tosi, Sebastien, Hernando-Momblona, Xavier, Batlle, Eduard, Loza-Alvarez, Pablo, Fernandez-Majada, Vanesa, Martinez, Elena, (2022). Modeling Biochemical Gradients In Vitro to Control Cell Compartmentalization in a Microengineered 3D Model of the Intestinal Epithelium Advanced Healthcare Materials 11, 2201172
Gradients of signaling pathways within the intestinal stem cell (ISC) niche are instrumental for cellular compartmentalization and tissue function, yet how are they sensed by the epithelium is still not fully understood. Here a new in vitro model of the small intestine based on primary epithelial cells (i), apically accessible (ii), with native tissue mechanical properties and controlled mesh size (iii), 3D villus-like architecture (iv), and precisely controlled biomolecular gradients of the ISC niche (v) is presented. Biochemical gradients are formed through hydrogel-based scaffolds by free diffusion from a source to a sink chamber. To confirm the establishment of spatiotemporally controlled gradients, light-sheet fluorescence microscopy and in-silico modeling are employed. The ISC niche biochemical gradients coming from the stroma and applied along the villus axis lead to the in vivo-like compartmentalization of the proliferative and differentiated cells, while changing the composition and concentration of the biochemical factors affects the cellular organization along the villus axis. This novel 3D in vitro intestinal model derived from organoids recapitulates both the villus-like architecture and the gradients of ISC biochemical factors, thus opening the possibility to study in vitro the nature of such gradients and the resulting cellular response.© 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
JTD Keywords: 3d architectures, biomolecular gradients, colon, crypt, engineering organoids, hydrogels, identification, in silico modeling, intestinal stem cell niches, light sheet fluorescence microscopy, niche, permeability, photolithography, regeneration, villus, wnt, 3d architectures, Biomolecular gradients, Engineering organoids, In silico modeling, Intestinal stem cell niches, Light sheet fluorescence microscopy, Photolithography, Stem-cell