DONATE

Publications

by Keyword: multivalency

Acosta-Gutiérrez, Silvia, Matias, Diana, Avila-Olias, Milagros, Gouveia, Virginia M., Scarpa, Edoardo, Forth, Joe, Contini, Claudia, Duro-Castano, Aroa, Rizzello, Loris, Battaglia, Giuseppe, (2022). A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting Acs Central Science 8, 891-904

Woythe L, Madhikar P, Feiner-Gracia N, Storm C, Albertazzi L, (2022). A Single-Molecule View at Nanoparticle Targeting Selectivity: Correlating Ligand Functionality and Cell Receptor Density Acs Nano 16, 3785-3796

Antibody-functionalized nanoparticles (NPs) are commonly used to increase the targeting selectivity toward cells of interest. At a molecular level, the number of functional antibodies on the NP surface and the density of receptors on the target cell determine the targeting interaction. To rationally develop selective NPs, the single-molecule quantitation of both parameters is highly desirable. However, techniques able to count molecules with a nanometric resolution are scarce. Here, we developed a labeling approach to quantify the number of functional cetuximabs conjugated to NPs and the expression of epidermal growth factor receptors (EGFRs) in breast cancer cells using direct stochastic optical reconstruction microscopy (dSTORM). The single-molecule resolution of dSTORM allows quantifying molecules at the nanoscale, giving a detailed insight into the distributions of individual NP ligands and cell receptors. Additionally, we predicted the fraction of accessible antibody-conjugated NPs using a geometrical model, showing that the total number exceeds the accessible number of antibodies. Finally, we correlated the NP functionality, cell receptor density, and NP uptake to identify the highest cell uptake selectivity regimes. We conclude that single-molecule functionality mapping using dSTORM provides a molecular understanding of NP targeting, aiding the rational design of selective nanomedicines.

JTD Keywords: active targeting, active targeting dstorm, antibodies, dstorm, heterogeneity, multivalency, nanomedicine, nanoparticle functionality, size, super-resolution microscopy, surface, Active targeting, Antibodies, Cell membranes, Cell receptors, Cytology, Direct stochastic optical reconstruction microscopy, Dstorm, Heterogeneity, Ligands, Medical nanotechnology, Molecules, Nanomedicine, Nanoparticle functionality, Nanoparticle targeting, Nanoparticles, Optical reconstruction, Single molecule, Stochastic systems, Stochastics, Super-resolution microscopy, Superresolution microscopy


Woythe L, Tito NB, Albertazzi L, (2021). A quantitative view on multivalent nanomedicine targeting Advanced Drug Delivery Reviews 169, 1-21

© 2020 The Authors Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.

JTD Keywords: binding-kinetics, biological identity, biomolecular corona, blood-brain-barrier, drug-delivery, gold nanoparticles, multivalency, nanotechnology, protein corona, quantitative characterization, rational design, super-selectivity, superresolution microscopy, tumor heterogeneity, Ligand-receptor interactions, Multivalency, Nanotechnology, Quantitative characterization, Rational design, Super-selectivity


Morgese, G., de Waal, B. F. M., Varela-Aramburu, S., Palmans, A. R. A., Albertazzi, L., Meijer, E. W., (2020). Anchoring supramolecular polymers to human red blood cells by combining dynamic covalent and non-covalent chemistries Angewandte Chemie - International Edition 59, (39), 17229-17233

Understanding cell/material interactions is essential to design functional cell-responsive materials. While the scientific literature abounds with formulations of biomimetic materials, only a fraction of them focused on mechanisms of the molecular interactions between cells and material. To provide new knowledge on the strategies for materials/cell recognition and binding, supramolecular benzene-1,3,5-tricarboxamide copolymers bearing benzoxaborole moieties are anchored on the surface of human erythrocytes via benzoxaborole/sialic-acid binding. This interaction based on both dynamic covalent and non-covalent chemistries is visualized in real time by means of total internal reflection fluorescence microscopy. Exploiting this imaging method, we observe that the functional copolymers specifically interact with the cell surface. An optimal fiber affinity towards the cells as a function of benzoxaborole concentration demonstrates the crucial role of multivalency in these cell/material interactions.

JTD Keywords: Boronic acid, Cell/material interactions, Multivalency, Red blood cells, Supramolecular polymers