DONATE

Publications

by Keyword: nanocomposites

Balakrishnan, H, Fabregas, R, Millan-Solsona, R, Fumagalli, L, Gomila, G, (2021). Spatial Resolution and Capacitive Coupling in the Characterization of Nanowire Nanocomposites by Scanning Dielectric Microscopy Microscopy And Microanalysis 27, 1026-1034

Nanowire-based nanocomposite materials are being developed as transparent and flexible electrodes or as stretchable conductors and dielectrics for biosensing. Here, we theoretically investigate the use of scanning dielectric microscopy (SDM) to characterize these materials in a nondestructive way, with a special focus on the achievable spatial resolution and the possibility of detection of the capacitive coupling between nearby nanowires. Numerical calculations with models involving single and multiple buried nanowires have been performed. We demonstrate that the capacitance gradient spread function of a single buried nanowire consists of a modified Lorenzianan with a cubic decay. We show that the achievable spatial resolution can be determined with good accuracy with the help of this spread function. It is shown that, in general, the spatial resolution worsens when any system parameter decreases the maximum of the nanowire spread function or increases its width, or both. Finally, we show that SDM measurements are also sensitive to the capacitive coupling between nearby nanowires. This latter result is of utmost relevance since the macroscopic electric properties of nanowire nanocomposites largely depend on the electric interaction between nearby nanowires. The present results show that SDM can be a valuable nondestructive subsurface characterization technique for nanowire nanocomposite materials.

JTD Keywords: depth, electrodes, nanocomposites, nanowires, sdm, spatial resolution, subsurface, tomography, Capacitive coupling, Force microscopy, Nanocomposites, Nanowires, Sdm, Spatial resolution, Subsurface


Balakrishnan, Harishankar, Millan-Solsona, Ruben, Checa, Marti, Fabregas, Rene, Fumagalli, Laura, Gomila, Gabriel, (2021). Depth mapping of metallic nanowire polymer nanocomposites by scanning dielectric microscopy Nanoscale 13, 10116-10126

Polymer nanocomposite materials based on metallic nanowires are widely investigated as transparent and flexible electrodes or as stretchable conductors and dielectrics for biosensing. Here we show that Scanning Dielectric Microscopy (SDM) can map the depth distribution of metallic nanowires within the nanocomposites in a non-destructive way. This is achieved by a quantitative analysis of sub-surface electrostatic force microscopy measurements with finite-element numerical calculations. As an application we determined the three-dimensional spatial distribution of ?50 nm diameter silver nanowires in ?100 nm-250 nm thick gelatin films. The characterization is done both under dry ambient conditions, where gelatin shows a relatively low dielectric constant, ?r ? 5, and under humid ambient conditions, where its dielectric constant increases up to ?r ? 14. The present results show that SDM can be a valuable non-destructive subsurface characterization technique for nanowire-based nanocomposite materials, which can contribute to the optimization of these materials for applications in fields such as wearable electronics, solar cell technologies or printable electronics. © The Royal Society of Chemistry.

JTD Keywords: composite, constant, electrodes, mode, nanostructures, objects, progress, subsurface, tomography, Composite materials, Dielectric materials, Electric force microscopy, Electrostatic force, Force microscopy, Low dielectric constants, Nanocomposites, Numerical calculation, Polymer nanocomposite, Printable electronics, Scanning dielectric microscopy, Silver nanowires, Solar cell technology, Stretchable conductors, Subsurface characterizations, Transparent electrodes, Wearable technology


Won, J. E., Mateos-Timoneda, M. A., Castaño, O., Planell, J. A., Seo, S. J., Lee, E. J., Han, C. M., Kim, H. W., (2015). Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering Biotechnology Letters , 37, (4), 935-342

Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration.

JTD Keywords: Bone scaffolds, Cell response, Fibronectin, Nanobioactive glass, Nanocomposites, Polycaprolactone, Bone, Cell proliferation, Cells, Cytology, Glass, Nanocomposites, Polycaprolactone, Robotics, Bone scaffolds, Bone tissue engineering, Cell response, Fibronectin, Fibronectin immobilizations, Nano bioactive glass, Nanocomposite scaffolds, Three-dimensional substrates, Scaffolds (biology)