DONATE

Publications

by Keyword: nanotopography

Casanellas, I, Samitier, J, Lagunas, A, (2022). Recent advances in engineering nanotopographic substrates for cell studies Frontiers In Bioengineering And Biotechnology 10, 1002967

Cells sense their environment through the cell membrane receptors. Interaction with extracellular ligands induces receptor clustering at the nanoscale, assembly of the signaling complexes in the cytosol and activation of downstream signaling pathways, regulating cell response. Nanoclusters of receptors can be further organized hierarchically in the cell membrane at the meso- and micro-levels to exert different biological functions. To study and guide cell response, cell culture substrates have been engineered with features that can interact with the cells at different scales, eliciting controlled cell responses. In particular, nanoscale features of 1-100 nm in size allow direct interaction between the material and single cell receptors and their nanoclusters. Since the first "contact guidance" experiments on parallel microstructures, many other studies followed with increasing feature resolution and biological complexity. Here we present an overview of the advances in the field summarizing the biological scenario, substrate fabrication techniques and applications, highlighting the most recent developments.Copyright © 2022 Casanellas, Samitier and Lagunas.

JTD Keywords: cell response, density, differentiation, lithography, micro, nanofabrication, nanopatterning, nanopatterns, nanoscale, nanotopography, organization, photolithography, Cell response, Nanofabrication, Nanopatterning, Nanotopography, Plasma-membrane, Receptor nanoclustering


Steeves, A.J., Ho, W., Munisso, M.C., Lomboni, D.J., Larrañaga, E., Omelon, S., Martínez, Elena, Spinello, D., Variola, F., (2020). The implication of spatial statistics in human mesenchymal stem cell response to nanotubular architectures International Journal of Nanomedicine 15, 2151-2169

Introduction: In recent years there has been ample interest in nanoscale modifications of synthetic biomaterials to understand fundamental aspects of cell-surface interactions towards improved biological outcomes. In this study, we aimed at closing in on the effects of nanotubular TiO2 surfaces with variable nanotopography on the response on human mesenchymal stem cells (hMSCs). Although the influence of TiO2 nanotubes on the cellular response, and in particular on hMSC activity, has already been addressed in the past, previous studies overlooked critical morphological, structural and physical aspects that go beyond the simple nanotube diameter, such as spatial statistics. Methods: To bridge this gap, we implemented an extensive characterization of nanotubular surfaces generated by anodization of titanium with a focus on spatial structural variables including eccentricity, nearest neighbour distance (NND) and Voronoi entropy, and associated them to the hMSC response. In addition, we assessed the biological potential of a two-tiered honeycomb nanoarchitecture, which allowed the detection of combinatory effects that this hierarchical structure has on stem cells with respect to conventional nanotubular designs. We have combined experimental techniques, ranging from Scanning Electron (SEM) and Atomic Force (AFM) microscopy to Raman spectroscopy, with computational simulations to characterize and model nanotubular surfaces. We evaluated the cell response at 6 hrs, 1 and 2 days by fluorescence microscopy, as well as bone mineral deposition by Raman spectroscopy, demonstrating substrate-induced differential biological cueing at both the short- and long-term. Results: Our work demonstrates that the nanotube diameter is not sufficient to comprehensively characterize nanotubular surfaces and equally important parameters, such as eccentricity and wall thickness, ought to be included since they all contribute to the overall spatial disorder which, in turn, dictates the overall bioactive potential. We have also demonstrated that nanotubular surfaces affect the quality of bone mineral deposited by differentiated stem cells. Lastly, we closed in on the integrated effects exerted by the superimposition of two dissimilar nanotubular arrays in the honeycomb architecture. Discussion: This work delineates a novel approach for the characterization of TiO2 nanotubes which supports the incorporation of critical spatial structural aspects that have been overlooked in previous research. This is a crucial aspect to interpret cellular behaviour on nanotubular substrates. Consequently, we anticipate that this strategy will contribute to the unification of studies focused on the use of such powerful nanostructured surfaces not only for biomedical applications but also in other technology fields, such as catalysis.

JTD Keywords: Nanotubes, Nanotopography, Spatial statistics, Stem cells, Bone quality


Fernandez, Javier G., Mills, C. A., Martinez, E., Lopez-Bosque, M. J., Sisquella, X., Errachid, A., Samitier, J., (2008). Micro- and nanostructuring of freestanding, biodegradable, thin sheets of chitosan via soft lithography Journal of Biomedical Materials Research - Part A , 85A, (1), 242-247

A technique for imparting micro- and nano-structured topography into the surface of freestanding thin sheets of chitosan is described. Both micro- and nanometric surface structures have been produced using soft lithography. The soft lithography method, based on solvent evaporation, has allowed structures similar to 60 nm tall and similar to 500 X 500 nm(2) to be produced on freestanding similar to 0.5 mm thick sheets of the polymer when cured at 293 K, and structures similar to 400 nm tall and 5 X 5 mu m(2) to be produced when cured at 283 K. Nonstructured chitosan thin sheets (similar to 200 mu m thick) show excellent optical transmission properties in the visible portion of the electromagnetic spectrum. The structured sheets can be used for applications where optical microscopic analysis is required, such as cell interaction experiments and tissue engineering.

JTD Keywords: Chitin/chitosan, Microstructure, Nanotopography, Polymerization, Soft lithography


Martinez, E., Engel, E., Lopez-Iglesias, C., Mills, C. A., Planell, J. A., Samitier, J., (2008). Focused ion beam/scanning electron microscopy characterization of cell behavior on polymer micro-/nanopatterned substrates: A study of cell-substrate interactions Micron , 39, (2), 111-116

Topographic micro and nanostructures can play an interesting role in cell behaviour when cells are cultured on these kinds of patterned substrates. It is especially relevant to investigate the influence of the nanometric dimensions topographic features on cell morphology, proliferation, migration and differentiation. To this end, some of the most recent fabrication technologies, developed for the microelectronics industry, can be used to produce well-defined micro and nanopatterns on biocompatible polymer substrates. In this work, osteoblast-like cells are grown on poly(methyl methacrylate) substrates patterned by nanoimprint lithography techniques. Examination of the cell-substrate interface can reveal important details about the cell morphology and the distribution of the focal contacts on the substrate surface. For this purpose, a combination of focused ion beam milling and scanning electron microscopy techniques has been used to image the cell-substrate interface. This technique, if applied to samples prepared by freeze-drying methods, allows high-resolution imaging of cross-sections through the cell and the substrate, where the interactions between the nanopatterned substrate, the cell and the extracellular matrix, which are normally hidden by the bulk of the cell, can be studied.

JTD Keywords: Electron microscopy, Interface, Nanotopography, Osteoblast, Adhesion molecule, Cell morphology