DONATE

Publications

by Keyword: Osseointegration

Garcia-de-Albeniz, N, Ginebra, MP, Jimenez-Piqué, E, Roa, JJ, Mas-Moruno, C, (2023). Influence of nanosecond laser surface patterning on dental 3Y-TZP: Effects on the topography, hydrothermal degradation and cell response Dental Materials 40, S0109-4

Laser surface micropatterning of dental-grade zirconia (3Y-TZP) was explored with the objective of providing defined linear patterns capable of guiding bone-cell response.A nanosecond (ns-) laser was employed to fabricate microgrooves on the surface of 3Y-TZP discs, yielding three different groove periodicities (i.e., 30, 50 and 100 µm). The resulting topography and surface damage were characterized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). X-Ray diffraction (XRD) and Raman spectroscopy techniques were employed to assess the hydrothermal degradation resistance of the modified topographies. Preliminary biological studies were conducted to evaluate adhesion (6 h) of human mesenchymal stem cells (hMSC) to the patterns in terms of cell number and morphology. Finally, Staphylococcus aureus adhesion (4 h) to the microgrooves was investigated.The surface analysis showed grooves of approximately 1.8 µm height that exhibited surface damage in the form of pile-up at the edge of the microgrooves, microcracks and cavities. Accelerated aging tests revealed a slight decrease of the hydrothermal degradation resistance after laser patterning, and the Raman mapping showed the presence of monoclinic phase heterogeneously distributed along the patterned surfaces. An increase of the hMSC area was identified on all the microgrooved surfaces, although only the 50 µm periodicity, which is closer to the cell size, significantly favored cell elongation and alignment along the grooves. A decrease in Staphylococcus aureus adhesion was observed on the investigated micropatterns.The study suggests that linear microgrooves of 50 µm periodicity may help in promoting hMSC adhesion and alignment, while reducing bacterial cell attachment.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: abutment material, alumina toughened zirconia, antibacterial, bacterial adhesion, biofilm growth, cell adhesion, dental implants, hydrothermal degradation, implant surfaces, in-vitro, laser patterning, osseointegration, osteogenic differentiation, part 1, surface topography, y-tzp ceramics, Antibacterial, Cell adhesion, Dental implants, Hydrothermal degradation, Laser patterning, Low-temperature degradation, Osseointegration, Surface topography, Zirconia


Rodríguez-Contreras, Alejandra, Torres, Diego, Piñera-Avellaneda, David, Pérez-Palou, Lluís, Ortiz-Hernández, Mònica, Ginebra, María Pau, Calero, José Antonio, Manero, José María, Rupérez, Elisa, (2023). Dual-Action Effect of Gallium and Silver Providing Osseointegration and Antibacterial Properties to Calcium Titanate Coatings on Porous Titanium Implants International Journal Of Molecular Sciences 24,

Previously, functional coatings on 3D-printed titanium implants were developed to improve their biointegration by separately incorporating Ga and Ag on the biomaterial surface. Now, a thermochemical treatment modification is proposed to study the effect of their simultaneous incorporation. Different concentrations of AgNO3 and Ga(NO3)3 are evaluated, and the obtained surfaces are completely characterized. Ion release, cytotoxicity, and bioactivity studies complement the characterization. The provided antibacterial effect of the surfaces is analyzed, and cell response is assessed by the study of SaOS-2 cell adhesion, proliferation, and differentiation. The Ti surface doping is confirmed by the formation of Ga-containing Ca titanates and nanoparticles of metallic Ag within the titanate coating. The surfaces generated with all combinations of AgNO3 and Ga(NO3)3 concentrations show bioactivity. The bacterial assay confirms a strong bactericidal impact achieved by the effect of both Ga and Ag present on the surface, especially for Pseudomonas aeruginosa, one of the main pathogens involved in orthopedic implant failures. SaOS-2 cells adhere and proliferate on the Ga/Ag-doped Ti surfaces, and the presence of gallium favors cell differentiation. The dual effect of both metallic agents doping the titanium surface provides bioactivity while protecting the biomaterial from the most frequent pathogens in implantology.

JTD Keywords: 3d-printing, agent, antibacterial activity, bioactive ti, biomaterials, coatings, competition, cu, gallium, glasses, ions, metal, porous structures, promote osseointegration, silver, titanium implants, In-vitro, Porous structures, Titanium implants


Guillem-Marti, J, Vidal, E, Girotti, A, Heras-Parets, A, Torres, D, Arias, FJ, Ginebra, MP, Rodriguez-Cabello, JC, Manero, JM, (2023). Functionalization of 3D-Printed Titanium Scaffolds with Elastin-like Recombinamers to Improve Cell Colonization and Osteoinduction Pharmaceutics 15, 872

The 3D printing of titanium (Ti) offers countless possibilities for the development of personalized implants with suitable mechanical properties for different medical applications. However, the poor bioactivity of Ti is still a challenge that needs to be addressed to promote scaffold osseointegration. The aim of the present study was to functionalize Ti scaffolds with genetically modified elastin-like recombinamers (ELRs), synthetic polymeric proteins containing the elastin epitopes responsible for their mechanical properties and for promoting mesenchymal stem cell (MSC) recruitment, proliferation, and differentiation to ultimately increase scaffold osseointegration. To this end, ELRs containing specific cell-adhesive (RGD) and/or osteoinductive (SNA15) moieties were covalently attached to Ti scaffolds. Cell adhesion, proliferation, and colonization were enhanced on those scaffolds functionalized with RGD-ELR, while differentiation was promoted on those with SNA15-ELR. The combination of both RGD and SNA15 into the same ELR stimulated cell adhesion, proliferation, and differentiation, although at lower levels than those for every single moiety. These results suggest that biofunctionalization with SNA15-ELRs could modulate the cellular response to improve the osseointegration of Ti implants. Further investigation on the amount and distribution of RGD and SNA15 moieties in ELRs could improve cell adhesion, proliferation, and differentiation compared to the present study.

JTD Keywords: 3d printing, adhesion, biofunctionalization, elastin-like recombinamers, functionalization, hydroxyapatite, osseointegration, polymers, purification, technology, titanium, 3d printing, Surfaces, Titanium


Rodríguez-Contreras A, Torres D, Rafik B, Ortiz-Hernandez M, Ginebra MP, Calero JA, Manero JM, Ruperez E, (2021). Bioactivity and antibacterial properties of calcium- and silver-doped coatings on 3D printed titanium scaffolds Surface & Coatings Technology 421

One of the major problems faced by metallic implants is the high probability of bacterial infections, with significant consequences for the patient. In this work, a thermochemical treatment is proposed to obtain silver-doped calcium titanate coatings on the Ti surface to improve the bioactivity of porous 3D-printed Ti structures and simultaneously provide them with antibacterial properties. A complete characterization of the new coating, the study of the ion release and the analysis of its cytotoxicity were carried out together with evaluation of the natural apatite forming in simulated body fluid (SBF). Moreover, the antibacterial properties of the coatings were assessed against Pseudomona aeruginosa and Escherichia coli as gram-negative and Staphylococcus aureus and Staphylococcus epidermidis as gram-positive bacterial strains. Ag ions were integrated into the Ca titanate layer and Ag nanoparticles were formed within the entire 3D Ti surface. Ca and Ag ions were released from both porous and solid samples into the Hanks' solution for 48 h. The treated surfaces showed no cytotoxicity and an apatite layer precipitated on the entire porous surface when the samples were immersed in SBF. The release of Ag from the surface had a strong antibacterial effect and prevented bacterial adhesion and proliferation on the surface. Moreover, the nanostructured topography of the coating resulted also in a reduction of bacterial adhesion and proliferation, even in absence of Ag. In conclusion, the cost-effective approach here reported provided protection against the most predominant bacterial colonizers to the Ti porous implants, while maintaining their bioactivity.

JTD Keywords: 3d-printing, alkaline, antibacterial activity, arthroplasty, bacterial adhesion, biomaterials, generation, ions, nanoparticles, osseointegration, silver, surface-layer, titanium implants, toxicity, 3d-printing, Antibacterial activity, Biomaterials, Porous structures, Silver, Ti metal, Titanium implants


Oliver-Cervelló L, Martin-Gómez H, Reyes L, Noureddine F, Ada Cavalcanti-Adam E, Ginebra MP, Mas-Moruno C, (2021). An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling Advanced Healthcare Materials 10, e2001757

© 2020 Wiley-VCH GmbH Recreating the healing microenvironment is essential to regulate cell–material interactions and ensure the integration of biomaterials. To repair bone, such bioactivity can be achieved by mimicking its extracellular matrix (ECM) and by stimulating integrin and growth factor (GF) signaling. However, current approaches relying on the use of GFs, such as bone morphogenetic protein 2 (BMP-2), entail clinical risks. Here, a biomimetic peptide integrating the RGD cell adhesive sequence and the osteogenic DWIVA motif derived from the wrist epitope of BMP-2 is presented. The approach offers the advantage of having a spatial control over the single binding of integrins and BMP receptors. Such multifunctional platform is designed to incorporate 3,4-dihydroxyphenylalanine to bind metallic oxides with high affinity in a one step process. Functionalization of glass substrates with the engineered peptide is characterized by physicochemical methods, proving a successful surface modification. The biomimetic interfaces significantly improve the adhesion of C2C12 cells, inhibit myotube formation, and activate the BMP-dependent signaling via p38. These effects are not observed on surfaces displaying only one bioactive motif, a mixture of both motifs or soluble DWIVA. These data prove the biological potential of recreating the ECM and engaging in integrin and GF crosstalk via molecular-based mimics.

JTD Keywords: binding, biomaterials, biomimetic peptides, bone, cell adhesion, cell differentiation, differentiation, dwiva, multifunctional coatings, osseointegration, osteoblasts, rgd, surface, surface functionalization, Biomimetic peptides, Cell adhesion, Cell differentiation, Dwiva, Matrix-bound bmp-2, Rgd, Surface functionalization


Vidal, E., Torres, D., Guillem-Marti, J., Scionti, G., Manero, J. M., Ginebra, M. P., Rodríguez, D., Rupérez, E., (2020). Titanium scaffolds by direct ink writing: Fabrication and functionalization to guide osteoblast behavior Metals 10, (9), 1156

Titanium (Ti) and Ti alloys have been used for decades for bone prostheses due to its mechanical reliability and good biocompatibility. However, the high stiffness of Ti implants and the lack of bioactivity are pending issues that should be improved to minimize implant failure. The stress shielding effect, a result of the stiffness mismatch between titanium and bone, can be reduced by introducing a tailored structural porosity in the implant. In this work, porous titanium structures were produced by direct ink writing (DIW), using a new Ti ink formulation containing a thermosensitive hydrogel. A thermal treatment was optimized to ensure the complete elimination of the binder before the sintering process, in order to avoid contamination of the titanium structures. The samples were sintered in argon atmosphere at 1200 °C, 1300 °C or 1400 °C, resulting in total porosities ranging between 72.3% and 77.7%. A correlation was found between the total porosity and the elastic modulus of the scaffolds. The stiffness and yield strength were similar to those of cancellous bone. The functionalization of the scaffold surface with a cell adhesion fibronectin recombinant fragment resulted in enhanced adhesion and spreading of osteoblastic-like cells, together with increased alkaline phosphatase expression and mineralization.

JTD Keywords: Direct ink writing, Osseointegration, Recombinant protein, Thermoresponsive binder, Titanium, Titanium scaffold


Guillem-Marti, J., Gelabert, M., Heras-Parets, A., Pegueroles, M., Ginebra, M. P., Manero, J. M., (2019). RGD mutation of the heparin binding II fragment of fibronectin for guiding mesenchymal stem cell behavior on titanium surfaces ACS Applied Materials and Interfaces 11, (4), 3666-3678

Installing bioactivity on metallic biomaterials by mimicking the extracellular matrix (ECM) is crucial for stimulating specific cellular responses to ultimately promote tissue regeneration. Fibronectin is an ECM protein commonly used for biomaterial functionalization. The use of fibronectin recombinant fragments is an attractive alternate to the use of full-length fibronectin because of the relatively low cost and facility of purification. However, it is necessary to combine more than one fragment, for example, the cell attachment site and the heparin binding II (HBII), either mixed or in one molecule, to obtain complete activity. In the present study, we proposed to install adhesion capacity to the HBII fragment by an RGD gain-of-function DNA mutation, retaining its cell differentiation capacity and thereby producing a small and very active protein fragment. The novel molecule, covalently immobilized onto titanium surfaces, maintained the growth factor-binding capacity and stimulated cell spreading, osteoblastic cell differentiation, and mineralization of human mesenchymal stem cells compared to the HBII native protein. These results highlight the potential capacity of gain-of-function DNA mutations in the design of novel molecules for the improvement of osseointegration properties of metallic implant surfaces.

JTD Keywords: Fibronectin, Growth factor, Mutation, Osseointegration, Recombinant protein, Titanium


Guillem-Marti, J., Boix-Lemonche, G., Gugutkov, D., Ginebra, M.-P., Altankov, G., Manero, J.M., (2018). Recombinant fibronectin fragment III8-10/polylactic acid hybrid nanofibers enhance the bioactivity of titanium surface Nanomedicine 13, (8), 899-912

Aim: To develop a nanofiber (NF)-based biomimetic coating on titanium (Ti) that mimics the complex spatiotemporal organization of the extracellular matrix (ECM). Materials & methods: Recombinant cell attachment site (CAS) of fibronectin type III8-10 domain was co-electrospun with polylactic acid (PLA) and covalently bound on polished Ti discs. Osteoblast-like SaOS-2 cells were used to evaluate their complex bioactivity. Results: A significant increase of cell spreading was found on CAS/PLA hybrid NFs, followed by control pure PLA NFs and bare Ti discs. Cell proliferation showed similar trend being about twice higher on CAS/PLA NFs. The significantly increased ALP activity at day 21 indicated an enhanced differentiation of SaOS-2 cells. Conclusion: Coating of Ti implants with hybrid CAS/PLA NFs may improve significantly their osseointegration potential.

JTD Keywords: Electrospinning, Fibronectin, Hybrid nanofibers, Osseointegration, PLA, Recombinant protein


Hoyos-Nogués, M., Velasco, F., Ginebra, M. P., Manero, J. M., Gil, F. J., Mas-Moruno, C., (2017). Regenerating bone via multifunctional coatings: The blending of cell integration and bacterial inhibition properties on the surface of biomaterials ACS Applied Materials & Interfaces 9, (26), 21618-21630

In dentistry and orthopedics, it is well accepted that implant fixation is a major goal. However, an emerging concern is bacterial infection. Infection of metallic implants can be catastrophic and significantly reduce patient quality of life. Accordingly, in this work, we focus on multifunctional coatings to simultaneously address and mitigate both these problems. We have developed a tailor-made peptide-based chemical platform that integrates the well-known RGD cell adhesive sequence and the lactoferrin-derived LF1-11 antimicrobial peptide. The platform was covalently grafted on titanium via silanization and the functionalization process characterized by contact angle, XPS, and QCM-D. The presence of the platform statistically improved the adhesion, proliferation and mineralization of osteoblast-like cells compared to control surfaces. At the same time, colonization by representative bacterial strains was significantly reduced on the surfaces. Furthermore, the biological potency of the multifunctional platform was verified in a co-culture in vitro model. Our findings demonstrate that this multifunctional approach can be useful to functionalize biomaterials to both improve cell integration and reduce the risk of bacterial infection.

JTD Keywords: Antimicrobial peptides, Cell adhesive peptides, Multifunctionality, Osseointegration, Surface functionalization


Fraioli, R., Dashnyam, K., Kim, J. H., Perez, R. A., Kim, H. W., Gil, J., Ginebra, M. P., Manero, J. M., Mas-Moruno, C., (2016). Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo Acta Biomaterialia 43, 269-281

Surface modification stands out as a versatile technique to create instructive biomaterials that are able to actively direct stem cell fate. Chemical functionalization of titanium has been used in this work to stimulate the differentiation of human mesenchymal stem cells (hMSCs) into the osteoblastic lineage, by covalently anchoring a synthetic double-branched molecule (PTF) to the metal that allows a finely controlled presentation of peptidic motifs. In detail, the effect of the RGD adhesive peptide and its synergy motif PHSRN is studied, comparing a random distribution of the two peptides with the chemically-tailored disposition within the custom made synthetic platform, which mimics the interspacing between the motifs observed in fibronectin. Contact angle measurement and XPS analysis are used to prove the efficiency of functionalization. We demonstrate that, by rationally designing ligands, stem cell response can be efficiently guided towards the osteogenic phenotype: In vitro, PTF-functionalized surfaces support hMSCs adhesion, with higher cell area and formation of focal contacts, expression of the integrin receptor α5β1 and the osteogenic marker Runx2, and deposition a highly mineralized matrix, reaching values of mineralization comparable to fibronectin. Our strategy is also demonstrated to be efficient in promoting new bone growth in vivo in a rat calvarial defect. These results highlight the efficacy of chemical control over the presentation of bioactive peptides; such systems may be used to engineer bioactive surfaces with improved osseointegrative properties, or can be easily tuned to generate multi-functional coatings requiring a tailored disposition of the peptidic motifs. Statement of significance Organic coatings have been proposed as a solution to foster osseointegration of orthopedic implants. Among them, extracellular matrix-derived peptide motifs are an interesting biomimetic strategy to harness cell-surface interactions. Nonetheless, the combination of multiple peptide motifs in a controlled manner is essential to achieve receptor specificity and fully exploit the potentiality of synthetic peptides. Herein, we covalently graft to titanium a double branched molecule to guide stem cell fate in vitro and generate an osseoinductive titanium surface in vivo. Such synthetic ligand allows for the simultaneous presentation of two bioactive motifs, thus is ideal to test the effect of synergic sequences, such as RGD and PHSRN, and is a clear example of the versatility and feasibility of rationally designed biomolecules.

JTD Keywords: hMSCs, Integrin-binding peptides, Osseointegration, RGD-PHSRN, Titanium