by Keyword: olfactometry
Burgués, J, Doñate, S, Esclapez, MD, Saúco, L, Marco, S, (2022). Characterization of odour emissions in a wastewater treatment plant using a drone-based chemical sensor system Science Of The Total Environment 846, 157290
Conventionally, odours emitted by different sources present in wastewater treatment plants (WWTPs) are measured by dynamic olfactometry, where a human panel sniffs and analyzes air bags collected from the plant. Although the method is considered the gold standard, the process is costly, slow, and infrequent, which does not allow operators to quickly identify and respond to problems. To better monitor and map WWTP odour emissions, here we propose a small rotary-wing drone equipped with a lightweight (1.3-kg) electronic nose. The "sniffing drone" sucks in air via a ten-meter (33-foot) tube and delivers it to a sensor chamber where it is analyzed in real-time by an array of 21 gas sensors. From the sensor signals, machine learning (ML) algorithms predict the odour concentration that a human panel using the EN13725 methodology would report. To calibrate and validate the predictive models, the drone also carries a remotely controlled sampling device (compliant with EN13725:2022) to collect sample air in bags for post-flight dynamic olfactometry. The feasibility of the proposed system is assessed in a WWTP in Spain through several measurement campaigns covering diverse operating regimes of the plant and meteorological conditions. We demonstrate that training the ML algorithms with dynamic (transient) sensor signals measured in flight conditions leads to better performance than the traditional approach of using steady-state signals measured in the lab via controlled exposures to odour bags. The comparison of the electronic nose predictions with dynamic olfactometry measurements indicates a negligible bias between the two measurement techniques and 95 % limits of agreement within a factor of four. This apparently large disagreement, partly caused by the high uncertainty of olfactometric measurements (typically a factor of two), is more than offset by the immediacy of the predictions and the practical advantages of using a drone-based system.Copyright © 2022. Published by Elsevier B.V.
JTD Keywords: calibration, chemical sensors, drone, dynamic olfactometry, electronic nose, odourquantification, olfaction, volatile organic-compounds, wwtp, Calibration, Chemical sensors, Drone, Dynamic olfactometry, Electronic nose, Environmental monitoring, Odour quantification, Olfaction, Variable selection methods, Wwtp
de Oliveira, LF, Braga, SCGN, Augusto, F, Poppi, RJ, (2021). Correlating comprehensive two-dimensional gas chromatography volatile profiles of chocolate with sensory analysis Brazilian Journal Of Analytical Chemistry 8, 131-140
The identification of key components relevant to sensory perception of quality from commercial chocolate samples was accomplished after chemometric processing of GC×GC-MS (Comprehensive Two-dimensional Gas Chromatography with Mass Spectrometric Detection) profiles corresponding to HS-SPME (Headspace Solid Phase Microextraction) extracts of the samples. Descriptive sensory evaluation of samples was carried out using Optimized Descriptive Profile (ODP) procedures, where sensory attributes of 24 commercial chocolate samples were used to classify them in two classes (low and high chocolate flavor). 2D Fisher Ratio analysis was applied to four-way chromatographic data tensors (1st dimension retention time 1tR × 2nd dimension retention time 2tR × m/z × sample), to identify the crucial areas on the chromatograms that resulted on ODP class separation on Principal Component Analysis (PCA) scores plot. Comparing the relevant sections of the chromatograms to the analysis of the corresponding mass spectra, it was possible to assess that most of the information regarding the sample main sensory attributes can be related to only 14 compounds (2,5-dimethylpyrazine, 2,6-dimethyl-4-heptanol, 1-octen-3-ol, trimethylpyrazine, β-pinene, o-cimene, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, benzaldehyde, 1,3,5-trimethylbenzene, 6-methyl-5-hepten-2-one, limonene, benzeneethanol and 1,1-dimethylbutylbenzene) among the complex blend of volatiles found on these extremely complex samples.
JTD Keywords: classification, cocoa, dark chocolate, feature-selection, fisher ratio, gcxgc-ms, impact, olfactometry, principal component analysis, sensorial analysis, Chocolate flavor, Fisher ratio, Flight mass-spectrometry, Gc×gc-ms, Principal component analysis, Sensorial analysis