DONATE

Publications

by Keyword: protein corona

Dolci M, Wang Y, Nooteboom SW, Soto Rodriguez PED, Sánchez S, Albertazzi L, Zijlstra P, (2023). Real-Time Optical Tracking of Protein Corona Formation on Single Nanoparticles in Serum Acs Nano 17, 20167-20178

The formation of a protein corona, where proteins spontaneously adhere to the surface of nanomaterials in biological environments, leads to changes in their physicochemical properties and subsequently affects their intended biomedical functionalities. Most current methods to study protein corona formation are ensemble-averaging and either require fluorescent labeling, washing steps, or are only applicable to specific types of particles. Here we introduce real-time all-optical nanoparticle analysis by scattering microscopy (RONAS) to track the formation of protein corona in full serum, at the single-particle level, without any labeling. RONAS uses optical scattering microscopy and enables real-time and in situ tracking of protein adsorption on metallic and dielectric nanoparticles with different geometries directly in blood serum. We analyzed the adsorbed protein mass, the affinity, and the kinetics of the protein adsorption at the single particle level. While there is a high degree of heterogeneity from particle to particle, the predominant factor in protein adsorption is surface chemistry rather than the underlying nanoparticle material or size. RONAS offers an in-depth understanding of the mechanisms related to protein coronas and, thus, enables the development of strategies to engineer efficient bionanomaterials.

JTD Keywords: Dielectric nanoparticles, Optical microscopy, Plasmonic nanoparticles, Protein corona, Single particles


Dols-Perez, A, Fornaguera, C, Feiner-Gracia, N, Grijalvo, S, Solans, C, Gomila, G, (2023). Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating Colloids And Surfaces B-Biointerfaces 222, 113019

Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

JTD Keywords: afm, atomic-force microscopy, cell, delivery-systems, drug-delivery, emulsification approach, internalization, mechanics of nanoparticles, nanomedicine, nanoparticle functionalization, particles, protein corona, size, young?s modulus, Afm, Loaded plga nanoparticles, Mechanics of nanoparticles, Nanomedicine, Nanoparticle functionalization, Polymeric nanoparticles, Young’s modulus


Woythe, L, Tholen, MME, Rosier, BJHM, Albertazzi, L, (2023). Single-Particle Functionality Imaging of Antibody-Conjugated Nanoparticles in Complex Media Acs Applied Bio Materials 6, 171-181

The properties of nanoparticles (NPs) can change upon contact with serum components, occluding the NP surface by forming a biomolecular corona. It is believed that targeted NPs can lose their functionality due to this biological coating, thus losing specificity and selectivity toward target cells and leading to poor therapeutic efficiency. A better understanding of how the biomolecular corona affects NP ligand functionality is needed to maintain NP targeting capabilities. However, techniques that can quantify the functionality of NPs at a single-particle level in a complex medium are limited and often laborious in sample preparation, measurement, and analysis. In this work, the influence of serum exposure on the functionality of antibody-functionalized NPs was quantified using a straightforward total internal reflection fluorescence (TIRF) microscopy method and evaluated in cell uptake studies. The single-particle resolution of TIRF reveals the interparticle functionality heterogeneity and the substantial differences between NPs conjugated with covalent and noncovalent methods. Notably, only NPs covalently conjugated with a relatively high amount of antibodies maintain their functionality to a certain extent and still showed cell specificity and selectivity toward high receptor density cells after incubation in full serum. The presented study emphasizes the importance of single-particle functional characterization of NPs in complex media, contributing to the understanding and design of targeted NPs that retain their cell specificity and selectivity in biologically relevant conditions.

JTD Keywords: binding, biomolecular corona, cell selectivity, heterogeneity, nanoparticle conjugation, protein corona, tirf microscopy, Active targeting, Biomolecular corona, Cell selectivity, Heterogeneity, Nanoparticle conjugation, Tirf microscopy


Bonany, M, Pérez-Berná, AJ, Ducic, T, Pereiro, E, Martin-Gómez, H, Mas-Moruno, C, van Rijt, S, Zhao, ZT, Espanol, M, Ginebra, MP, (2022). Hydroxyapatite nanoparticles-cell interaction: New approaches to disclose the fate of membrane-bound and internalised nanoparticles Biomaterials Advances 142, 213148

Hydroxyapatite nanoparticles are popular tools in bone regeneration, but they have also been used for gene delivery and as anticancer drugs. Understanding their mechanism of action, particularly for the latter application, is crucial to predict their toxicity. To this end, we aimed to elucidate the importance of nanoparticle membrane interactions in the cytotoxicity of MG-63 cells using two different types of nanoparticles. In addition, conventional techniques for studying nanoparticle internalisation were evaluated and compared with newer and less exploited approaches. Hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles were used as suspensions or compacted as specular discs. Comparison between cells seeded on the discs and those supplemented with the nanoparticles allowed direct interaction of the cell membrane with the material to be ruled out as the main mechanism of toxicity. In addition, standard techniques such as flow cytometry were inconclusive when used to assess nanoparticles toxicity. Interestingly, the use of intracellular calcium fluorescent probes revealed the presence of a high number of calcium-rich vesicles after nanoparticle supplementation in cell culture. These structures could not be detected by transmission electron microscopy due to their liquid content. However, by using cryo-soft X-ray imaging, which was used to visualise the cellular ultrastructure without further treatment other than vitrification and to quantify the linear absorption coefficient of each organelle, it was possible to identify them as multivesicular bodies, potentially acting as calcium stores. In the study, an advanced state of degradation of the hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles within MG-63 cells was observed. Overall, we demonstrate that the combination of fluorescent calcium probes together with cryo-SXT is an excellent approach to investigate intracellular calcium, especially when found in its soluble form.Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.

JTD Keywords: adsorption, cryo-soft x-ray tomography, cytotoxicity, expression, flow cytometry, internalisation, intracellular calcium, magnesium, nano, nanomaterials, nanoparticles, proliferation, protein corona, ultrastructure, Calcium-phosphate nanoparticles, Cryo-soft x-ray tomography, Flow cytometry, Hydroxyapatite, Internalisation, Intracellular calcium, Nanoparticles


Wang, YY, Rodriguez, PEDS, Woythe, L, Sánchez, S, Samitier, J, Zijlstra, P, Albertazzi, L, (2022). Multicolor Super-Resolution Microscopy of Protein Corona on Single Nanoparticles Acs Applied Materials & Interfaces 14, 37345-37355

Nanoparticles represent a promising class of material for nanomedicine and molecular biosensing. The formation of a protein corona due to nonspecific particle-protein interactions is a determining factor for the biological fate of nanoparticles in vivo and strongly impacts the performance of nanoparticles when used as biosensors. Nonspecific interactions are usually highly heterogeneous, yet little is known about the heterogeneity of the protein corona that may lead to inter- and intraparticle differences in composition and protein distribution. Here, we present a super-resolution microscopic approach to study the protein corona on single silica nanoparticles and subsequent cellular interactions using multicolor stimulated emission depletion (STED) microscopy. We demonstrate that STED resolves structural features of protein corona on single particles including the distribution on the particle surface and the degree of protein internalization in porous particles. Using multicolor measurements of multiple labeled protein species, we determine the composition of the protein corona at the single-particle level. We quantify particle-to-particle differences in the composition and find that the composition is considerably influenced by the particle geometry. In a subsequent cellular uptake measurement, we demonstrate multicolor STED of protein corona on single particles internalized by cells. Our study shows that STED microscopy opens the window toward mechanistic understanding of protein coronas and aids in the rational design of nanoparticles as nanomedicines and biosensors.

JTD Keywords: insights, multicolor microscopy, nanoparticles, protein corona, quantification, size, sted microscopy, Fluorescence, Quantification, Sted microscopy


Woythe, L, Tito, NB, Albertazzi, L, (2021). A quantitative view on multivalent nanomedicine targeting Advanced Drug Delivery Reviews 169, 1-21

© 2020 The Authors Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.

JTD Keywords: binding-kinetics, biological identity, biomolecular corona, blood-brain-barrier, drug-delivery, gold nanoparticles, multivalency, nanotechnology, protein corona, quantitative characterization, rational design, super-selectivity, superresolution microscopy, tumor heterogeneity, Ligand-receptor interactions, Multivalency, Nanotechnology, Quantitative characterization, Rational design, Super-selectivity


Feiner-Gracia, Natalia, Beck, Michaela, Pujals, Sílvia, Tosi, Sébastien, Mandal, Tamoghna, Buske, Christian, Linden, Mika, Albertazzi, Lorenzo, (2017). Super-resolution microscopy unveils dynamic heterogeneities in nanoparticle protein corona Small 13, (41), 1701631

The adsorption of serum proteins, leading to the formation of a biomolecular corona, is a key determinant of the biological identity of nanoparticles in vivo. Therefore, gaining knowledge on the formation, composition, and temporal evolution of the corona is of utmost importance for the development of nanoparticle-based therapies. Here, it is shown that the use of super-resolution optical microscopy enables the imaging of the protein corona on mesoporous silica nanoparticles with single protein sensitivity. Particle-by-particle quantification reveals a significant heterogeneity in protein absorption under native conditions. Moreover, the diversity of the corona evolves over time depending on the surface chemistry and degradability of the particles. This paper investigates the consequences of protein adsorption for specific cell targeting by antibody-functionalized nanoparticles providing a detailed understanding of corona-activity relations. The methodology is widely applicable to a variety of nanostructures and complements the existing ensemble approaches for protein corona study.

JTD Keywords: Heterogeneity, Mesoporous silica nanoparticles, Protein corona, Super-resolution imaging, Targeting