by Keyword: quality
Jonkman, AH, Warnaar, RSP, Baccinelli, W, Carbon, NM, D'Cruz, RF, Doorduin, J, van Doorn, JLM, Elshof, J, Estrada-Petrocelli, L, Grasshoff, J, Heunks, LMA, Koopman, AA, Langer, D, Moore, CM, Silveira, JMN, Petersen, E, Poddighe, D, Ramsay, M, Rodrigues, A, Roesthuis, LH, Rossel, A, Torres, A, Duiverman, ML, Oppersma, E, (2024). Analysis and applications of respiratory surface EMG: report of a round table meeting Critical Care 28, 2
Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.
JTD Keywords: Acute respiratory failure, Artificial ventilation, Asthmatic-children, Breathing muscle, Clinical monitoring, Clinical practice, Clinical research, Consensus development, Data interpretation, Disease exacerbation, Drive, Electrode positioning, Electrode removal, Electromyography, Force, Home care, Human, Human diaphragm, Humans, Information processing, Inspiratory muscle training, Inspiratory muscles, Intensive care unit, Knowledge gap, Long term care, Mechanical ventilation, Medical procedures, Muscle contraction, Muscle fatigue, Muscle function, Muscle training, Muscle, skeletal, Muscle-activity, Noninvasive ventilation, Patient monitoring, Patient-ventilator asynchrony, Physiology, Prognosis, Quality of life, Reporting and data system, Respiratory failure, Respiratory muscles, Review, Severe exacerbations, Signal processing, Skeletal muscle, Standardization, Surface electromyography, Time factor
Martorell, L, López-Fernández, A, García-Lizarribar, A, Sabata, R, Gálvez-Martín, P, Samitier, J, Vives, J, (2023). Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds Biotechnology And Bioengineering 120, 2717-2724
Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell-based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell-loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel-based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105(+)/CD45,(-) 10.3% HLA-DR,(+) 100.0% CD90,(+) and 99.2% CD73(+)/CD31(-) expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 +/- 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.
JTD Keywords: critical quality attributes, human mesenchymal stromal cells, osteogenic differentiation, potency, substances of human origin (soho), 3d bioprinting, Critical quality attributes, Human mesenchymal stromal cells, Osteogenic differentiation, Potency, Stem-cells, Substances of human origin (soho)
Bouras, A, Gutierrez-Galvez, A, Burgués, J, Bouzid, Y, Pardo, A, Guiatni, M, Marco, S, (2023). Concentration map reconstruction for gas source location using nano quadcopters: Metal oxide semiconductor sensor implementation and indoor experiments validation Measurement 213, 112638
Cillo, U, Weissenbacher, A, Pengel, L, Jochmans, I, Roppolo, D, Amarelli, C, Belli, LS, Berenguer, M, De Vries, A, Ferrer, J, Friedewald, J, Furian, L, Greenwood, S, Monbaliu, D, Nadalin, S, Neyrinck, A, Strazzabosco, M, Toso, C, Zaza, G, Thuraisingham, R, Berney, T, Potena, L, Montserrat, N, Selzner, N, (2022). ESOT Consensus Platform for Organ Transplantation: Setting the Stage for a Rigorous, Regularly Updated Development Process Transplant International 35, 10915
The European Society for Organ Transplantation (ESOT) has created a platform for the development of rigorous and regularly updated evidence based guidelines for clinical practice in the transplantation field. A dedicated Guideline Taskforce, including ESOT-council members, a representative from the Centre for Evidence in Transplantation, editors of the journal Transplant International has developed transparent procedures to guide the development of guidelines, recommendations, and consensus statements. During ESOT's first Consensus Conference in November 2022, leading experts will present in-depth evidence based reviews of nine themes and will propose recommendations aimed at reaching a consensus after public discussion and assessment by an independent jury. All recommendations and consensus statements produced for the nine selected topics will be published including the entire evidence-based consensus-finding process. An extensive literature review of each topic was conducted to provide final evidence and/or expert opinion.Copyright © 2022 Cillo, Weissenbacher, Pengel, Jochmans, Roppolo, Amarelli, Belli, Berenguer, De Vries, Ferrer, Friedewald, Furian, Greenwood, Monbaliu, Nadalin, Neyrinck, Strazzabosco, Toso, Zaza, Thuraisingham, Berney, Potena, Montserrat and Selzner.
JTD Keywords: consensus conference, guidelines, methodology, platform, Consensus conference, Guidelines, Methodology, Organ transplantation, Platform, Quality
Freire, R, Fernandez, L, Mallafré-Muro, C, Martín-Gómez, A, Madrid-Gambin, F, Oliveira, L, Pardo, A, Arce, L, Marco, S, (2021). Full workflows for the analysis of gas chromatography—ion mobility spectrometry in foodomics: Application to the analysis of iberian ham aroma Sensors 21, 6156
Gas chromatography—ion mobility spectrometry (GC-IMS) allows the fast, reliable, and inexpensive chemical composition analysis of volatile mixtures. This sensing technology has been successfully employed in food science to determine food origin, freshness and preventing alimentary fraud. However, GC-IMS data is highly dimensional, complex, and suffers from strong non-linearities, baseline problems, misalignments, peak overlaps, long peak tails, etc., all of which must be corrected to properly extract the relevant features from samples. In this work, a pipeline for signal pre-processing, followed by four different approaches for feature extraction in GC-IMS data, is presented. More precisely, these approaches consist of extracting data features from: (1) the total area of the reactant ion peak chromatogram (RIC); (2) the full RIC response; (3) the unfolded sample matrix; and (4) the ion peak volumes. The resulting pipelines for data processing were applied to a dataset consisting of two different quality class Iberian ham samples, based on their feeding regime. The ability to infer chemical information from samples was tested by comparing the classification results obtained from partial least-squares discriminant analysis (PLS-DA) and the samples’ variable importance for projection (VIP) scores. The choice of a feature extraction strategy is a trade-off between the amount of chemical information that is preserved, and the computational effort required to generate the data models.
JTD Keywords: authenticity, classification, electronic-nose, feature extraction, food analysis, gc-ims, headspace, least-squares, models, pld-da, pre-processing, quality, sensory analysis, wine, Feature extraction, Food analysis, Gc-ims, Hs-gc-ims, Pld-da, Pre-processing
Covington, JA, Marco, S, Persaud, KC, Schiffman, SS, Nagle, HT, (2021). Artificial Olfaction in the 21st Century Ieee Sensors Journal 21, 12969-12990
The human olfactory system remains one of the most challenging biological systems to replicate. Humans use it without thinking, where it can equally offer protection from harm and bring enjoyment in equal measure. It is the system’s ability to detect and analyze complex odors, without the need for specialized infra-structure, that is the envy of many scientists. The field of artificial olfaction has recruited and stimulated interdisciplinary research and commercial development for several applications that include malodor measurement, medical diagnostics, food and beverage quality, environment and security. Over the last century, innovative engineers and scientists have been focused on solving a range of problems associated with measurement and control of odor. The IEEE Sensors Journal has published Special Issues on olfaction in 2002 and 2012. Here we continue that coverage. In this article, we summarize early work in the 20th Century that served as the foundation upon which we have been building our odor-monitoring instrumental and measurement systems. We then examine the current state of the art that has been achieved over the last two decades as we have transitioned into the 21st Century. Much has been accomplished, but great progress is needed in sensor technology, system design, product manufacture and performance standards. In the final section, we predict levels of performance and ubiquitous applications that will be realized during in the mid to late 21st Century.
JTD Keywords: air-quality, breath analysis, calibration transfer, chemical sensor arrays, chemosensor arrays, drift compensation, electronic nose, gas sensors, headspace sampling, machine learning, machine olfaction, odor detection, plume structure, voc analysis, Artificial olfaction, Electrodes, Electronic nose, Electronic nose technology, Headspace sampling, Instruments, Machine learning, Machine olfaction, Monitoring, Odor detection, Olfactory, Sensor phenomena and characterization, Sensors, Temperature sensors, Voc analysis
Ferrer-Lluis, I, Castillo-Escario, Y, Montserrat, JM, Jané, R, (2021). Enhanced monitoring of sleep position in sleep apnea patients: Smartphone triaxial accelerometry compared with video-validated position from polysomnography Sensors 21, 3689
Poor sleep quality is a risk factor for multiple mental, cardiovascular, and cerebrovascular diseases. Certain sleep positions or excessive position changes can be related to some diseases and poor sleep quality. Nevertheless, sleep position is usually classified into four discrete values: supine, prone, left and right. An increase in sleep position resolution is necessary to better assess sleep position dynamics and to interpret more accurately intermediate sleep positions. This research aims to study the feasibility of smartphones as sleep position monitors by (1) developing algorithms to retrieve the sleep position angle from smartphone accelerometry; (2) monitoring the sleep position angle in patients with obstructive sleep apnea (OSA); (3) comparing the discretized sleep angle versus the four classic sleep positions obtained by the video-validated polysomnography (PSG); and (4) analyzing the presence of positional OSA (pOSA) related to its sleep angle of occurrence. Results from 19 OSA patients reveal that a higher resolution sleep position would help to better diagnose and treat patients with position-dependent diseases such as pOSA. They also show that smartphones are promising mHealth tools for enhanced position monitoring at hospitals and home, as they can provide sleep position with higher resolution than the gold-standard video-validated PSG.
JTD Keywords: accelerometry, actigraphy, association, biomedical signal processing, index, latency, mhealth, monitoring, pathophysiology, quality, questionnaire, score, sleep apnea, sleep position, smartphone, time, Accelerometry, Biomedical signal processing, Mhealth, Monitoring, Sleep apnea, Sleep position, Smartphone, Supine position
Steeves, A.J., Ho, W., Munisso, M.C., Lomboni, D.J., Larrañaga, E., Omelon, S., Martínez, Elena, Spinello, D., Variola, F., (2020). The implication of spatial statistics in human mesenchymal stem cell response to nanotubular architectures International Journal of Nanomedicine 15, 2151-2169
Introduction: In recent years there has been ample interest in nanoscale modifications of synthetic biomaterials to understand fundamental aspects of cell-surface interactions towards improved biological outcomes. In this study, we aimed at closing in on the effects of nanotubular TiO2 surfaces with variable nanotopography on the response on human mesenchymal stem cells (hMSCs). Although the influence of TiO2 nanotubes on the cellular response, and in particular on hMSC activity, has already been addressed in the past, previous studies overlooked critical morphological, structural and physical aspects that go beyond the simple nanotube diameter, such as spatial statistics.
Methods: To bridge this gap, we implemented an extensive characterization of nanotubular surfaces generated by anodization of titanium with a focus on spatial structural variables including eccentricity, nearest neighbour distance (NND) and Voronoi entropy, and associated them to the hMSC response. In addition, we assessed the biological potential of a two-tiered honeycomb nanoarchitecture, which allowed the detection of combinatory effects that this hierarchical structure has on stem cells with respect to conventional nanotubular designs. We have combined experimental techniques, ranging from Scanning Electron (SEM) and Atomic Force (AFM) microscopy to Raman spectroscopy, with computational simulations to characterize and model nanotubular surfaces. We evaluated the cell response at 6 hrs, 1 and 2 days by fluorescence microscopy, as well as bone mineral deposition by Raman spectroscopy, demonstrating substrate-induced differential biological cueing at both the short- and long-term.
Results: Our work demonstrates that the nanotube diameter is not sufficient to comprehensively characterize nanotubular surfaces and equally important parameters, such as eccentricity and wall thickness, ought to be included since they all contribute to the overall spatial disorder which, in turn, dictates the overall bioactive potential. We have also demonstrated that nanotubular surfaces affect the quality of bone mineral deposited by differentiated stem cells. Lastly, we closed in on the integrated effects exerted by the superimposition of two dissimilar nanotubular arrays in the honeycomb architecture.
Discussion: This work delineates a novel approach for the characterization of TiO2 nanotubes which supports the incorporation of critical spatial structural aspects that have been overlooked in previous research. This is a crucial aspect to interpret cellular behaviour on nanotubular substrates. Consequently, we anticipate that this strategy will contribute to the unification of studies focused on the use of such powerful nanostructured surfaces not only for biomedical applications but also in other technology fields, such as catalysis.
JTD Keywords: Nanotubes, Nanotopography, Spatial statistics, Stem cells, Bone quality
Fernandez, L., Martin-Gomez, A., Mar Contreras, M., Padilla, M., Marco, S., Arce, L., (2017). Ham quality evaluation assisted by gas chromatography ion mobility spectrometry IEEE Conference Publications ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) , IEEE (Montreal, Canada) , 1-3
In recent years, Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) has been successfully employed in food science as a control technique for the prevention of fraud according to food and labeling regulations. In this work, we propose the use of GC-IMS technique to assess the quality of Iberian ham with regard to the Iberian Pig's diet (either nourished with feed or with acorns). For this purpose, we have acquired a dataset composed of 53 samples of Iberian ham from different food providers using a commercial GC-IMS (FlavourSpec, from G.A.S. Dortmund, Germany). Intensive signal pre-processing for GC-IMS was applied to the raw data. This dataset was employed to create four Partial Least Squares Discriminant Analysis (PLSDA) models corresponding to different train/test partitions of the dataset. Nearly perfect classification rates (above 91 %) were obtained for each partition of the dataset, denoting the high power of GC-IMS to characterize food samples.
JTD Keywords: Classification, Food Science, GC-IMS, Ham quality, PLSDA
Palleja, T., Balsa, R., Tresanchez, M., Moreno, J., Teixido, M., Font, D., Marco, S., Pomareda, V., Palacin, J., (2014). Corridor gas-leak localization using a mobile Robot with a photo ionization detector sensor Sensor Letters , 12, (6-7), 974-977
The use of an autonomous mobile robot to locate gas-leaks and air quality monitoring in indoor environments are promising tasks that will avoid risky human operations. However, these are challenging tasks due to the chaotic gas profile propagation originated by uncontrolled air flows. This paper proposes the localization of an acetone gas-leak in a 44 m-length indoor corridor with a mobile robot equipped with a PID sensor. This paper assesses the influence of the mobile robot velocity and the relative height of the PID sensor in the profile of the measurements. The results show weak influence of the robot velocity and strong influence of the relative height of the PID sensor. An estimate of the gas-leak location is also performed by computing the center of mass of the highest gas concentrations.
JTD Keywords: Gas source detection, LIDAR sensor, Mobile robot, PID sensor, SLAM, Acetone, Air quality, Gases, Indoor air pollution, Mobile robots, Robots, Air quality monitoring, Autonomous Mobile Robot, Gas sources, Indoor environment, Leak localization, LIDAR sensors, Profile propagation, SLAM, Ionization of gases
Govoni, Leonardo, Dellaca, Raffaele L., Penuelas, Oscar, Bellani, Giacomo, Artigas, Antonio, Ferrer, Miquel, Navajas, Daniel, Pedotti, Antonio, Farre, Ramon, (2012). Actual performance of mechanical ventilators in ICU: a multicentric quality control study Medical Devices: Evidence and Research , 5, 111-119
Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 36 (530-723) mL, expired tidal volume = 608 36 (530-728) mL, peak pressure = 20.8 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.
JTD Keywords: Equipment and supplies, Medical devices, Intravenous, Quality assurance, Health care quality assessment, Ventilator accuracy, Ventilation error
Auffarth, Benjamin, Gutierrez-Galvez, Agustín, Marco, Santiago, (2011). Continuous spatial representations in the olfactory bulb may reflect perceptual categories Frontiers in Systems Neuroscience 5, (82), 1-8
In sensory processing of odors, the olfactory bulb is an important relay station, where odor representations are noise-filtered, sharpened, and possibly re-organized. An organization by perceptual qualities has been found previously in the piriform cortex, however several recent studies indicate that the olfactory bulb code reflects behaviorally relevant dimensions spatially as well as at the population level. We apply a statistical analysis on 2-deoxyglucose images, taken over the entire bulb of glomerular layer of the rat, in order to see how the recognition of odors in the nose is translated into a map of odor quality in the brain. We first confirm previous studies that the first principal component could be related to pleasantness, however the next higher principal components are not directly clear. We then find mostly continuous spatial representations for perceptual categories. We compare the space spanned by spatial and population codes to human reports of perceptual similarity between odors and our results suggest that perceptual categories could be already embedded in glomerular activations and that spatial representations give a better match than population codes. This suggests that human and rat perceptual dimensions of odorant coding are related and indicates that perceptual qualities could be represented as continuous spatial codes of the olfactory bulb glomerulus population.
JTD Keywords: Glomeruli, Memory organization, Odor quality, Olfaction, Olfactory bulb, Perceptual categories, Population coding, Spatial coding
Llorens, Franc, Hummel, Manuela, Pastor, Xavier, Ferrer, Anna, Pluvinet, Raquel, Vivancos, Ana, Castillo, Ester, Iraola, Susana, Mosquera, Ana M., Gonzalez, Eva, Lozano, Juanjo, Ingham, Matthew, Dohm, Juliane C., Noguera, Marc, Kofler, Robert, Antonio del Rio, Jose, Bayes, Monica, Himmelbauer, Heinz, Sumoy, Lauro, (2011). Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis BMC Genomics 12, 326
Background: Epidermal Growth Factor (EGF) is a key regulatory growth factor activating many processes relevant to normal development and disease, affecting cell proliferation and survival. Here we use a combined approach to study the EGF dependent transcriptome of HeLa cells by using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer.
Results: By applying a procedure for cross-platform data meta-analysis based on RankProd and GlobalAncova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We use this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we find an entirely new set of genes previously unrelated to the currently accepted EGF associated cellular functions.
Conclusions: We propose that the use of global genomic cross-validation derived from high content technologies (microarrays or deep sequencing) can be used to generate more reliable datasets. This approach should help to improve the confidence of downstream in silico functional inference analyses based on high content data.
JTD Keywords: Gene-expression measurements, Quality-control maqc, Cancer-cell-lines, Real-time pcr, Oligonucleotide microarrays, Phosphorylation dynamics, In-vivo, Networks, Signal, Technologies
Perera, A., Pardo, A., Barrettino, D., Hierlermann, A., Marco, S., (2010). Evaluation of fish spoilage by means of a single metal oxide sensor under temperature modulation Sensors and Actuators B: Chemical 146, (2), 477-482
In this paper the feasibility of using metal oxide gas sensor technology for evaluating spoilage process for sea bream (Sparus aurata) is explored. It is shown that a single sensor under temperature modulation is able to find a correlation with the fish spoilage process. Results are obtained in real frigorific storage conditions: that is, at low measurement temperatures with variations of relative humidity.
JTD Keywords: Gas sensors, Electronic nose, Spoilage process, Temperature modulation, Bream sparus-aurata, Electronic nose, Freshness, Quality, Sardines, Storage